AQA - Atomic structure - A2 Chemistry P1

- 1. June/ 2019/Paper_1/No.2
 - Time of flight (TOF) mass spectrometry can be used to analyse large molecules such as the pentapeptide, leucine encephalin (P).

P is ionised by electrospray ionisation and its mass spectrum is shown in Figure 2.

Figure 2

0 2 . 1 Describe the process of electrospray ionisation.

Give an equation to represent the ionisation of **P** in this process.

[4 marks]

Description			

Equation

	What is the relative molecular mass of P ? Tick (✓) one box.			
555	556		557	

0 2 . 3 A molecule $\bf Q$ is ionised by electron impact in a TOF mass spectrometer. The $\bf Q^+$ ion has a kinetic energy of 2.09 x 10^{-15} J This ion takes 1.23×10^{-5} s to reach the detector. The length of the flight tube is 1.50 m

Calculate the relative molecular mass of Q.

$$KE = \frac{1}{2}mv^2$$
 where $m = \text{mass (kg)}$ and $v = \text{speed (m s}^{-1})$

The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$

[5 marks]

2	luno/	2019/Paper	1/Na 2
Z .	Julie/	ZUIJ/Fabei	1/11/0.5

3 0 This question is about periodicity, the Period 4 elements and their compounds.

0 3 State the meaning of the term periodicity.

[1 mark]

3 2 0 Identify the element in Period 4 with the highest electronegativity value.

[1 mark]

0 3 3 Identify the element in Period 4 with the largest atomic radius. Explain your answer.

[3 marks]

Element

Explanation

The equations for two reactions of arsenic(III) oxide are shown. 3 .

$$As_2O_3 + 6HCl \rightarrow 2AsCl_3 + 3H_2O$$

$$As_2O_3 + 6\,NaOH \rightarrow 2\,Na_3AsO_3 + 3\,H_2O$$

Name the property of arsenic(III) oxide that describes its ability to react in these two ways.

[1 mark]

Complete the equation for the formation of arsenic hydride.

[1 mark]

 $As_2O_3 +$

Zn +

 $HNO_3 \rightarrow AsH_3 +$

 $Zn(NO_3)_2 +$

 H_2O

3.	June/ 2021/Pap	per_1/	No.2	3011/24/24/25:30				
	0 2	This question is about atomic structure.						
	0 2. 1 Define the mass number of an atom.							
	0 2. 2 Complete Table 3 to show the numbers of neutrons and electrons in shown.							
					Table 3	[2 marks]		
				Number of protons	Number of neutrons	Number of electrons		
			⁴⁶ Ti	22				
			⁴⁹ Ti ²⁺	22				
	0 2.3	A sample of titanium contains four isotopes, ⁴⁶ Ti, ⁴⁷ Ti, ⁴⁸ Ti and ⁴⁹ Ti This sample has a relative atomic mass of 47.8 In this sample the ratio of abundance of isotopes ⁴⁶ Ti, ⁴⁷ Ti and ⁴⁹ Ti is 2:2:1						
		Calc	ulate the pe	ercentage abundance	of ⁴⁶ Ti in this sample.	[3 marks]		
				٨٨٠٠٠	adanas af 46Ti	9/		