AQA - Aromatic chemistry - A2 Chemistry P2

1. June/ 2020/Paper_2/No. 2

$\mathbf{0}$	$\mathbf{2} \quad$ Prilocaine is used as an anaesthetic in dentistry.

Figure 3 shows the structure of prilocaine.
Figure 3

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$ Draw a circle around any chiral centre(s) in Figure 3.

[1 mark]

| 0 | 2 | 2 |
| :--- | :--- | :--- | Identify the functional group(s) in the prilocaine molecule.

Tick (\checkmark) the box(es) corresponding to the functional group(s).

Amide	Amine	Ester	Ketone

0	2	3	Prilocaine is completely hydrolysed in the human body to give a mixture of products.

Draw the structures of the two organic products formed in the complete hydrolysis of prilocaine in acidic conditions.
[3 marks]

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$ Figure $\mathbf{4}$ shows optical isomers \mathbf{F} and \mathbf{G}.

Figure 4

Isomer F

Isomer G

Isomer \mathbf{F} is the active compound in the medicine ibuprofen.
In the manufacture of ibuprofen both isomers \mathbf{F} and \mathbf{G} are formed. An enzyme is then used to bind to isomer \mathbf{G} and catalyse its hydrolysis.

After the products of hydrolysis of \mathbf{G} are removed, a pure sample of isomer \mathbf{F} is collected.

Explain how a structural feature of this enzyme enables it to catalyse the hydrolysis of isomer \mathbf{G} but not the hydrolysis of isomer \mathbf{F}.
[2 marks]
\qquad
\qquad
\qquad
\qquad
2. June/ 2020/Paper_2/No. 6

| 0 | 6 |
| :--- | :--- |\quad Polystyrene can be made from benzene in the series of steps shown.

| 0 | 6 | 1 |
| :--- | :--- | :--- | State the type of reaction in step 1.

Identify the reagent(s) and conditions needed for step 1.
[3 marks]
Type of reaction \qquad
Reagent(s) \qquad
Conditions \qquad

0	6	2	State the name of the mechanism for the reaction in step 2.

Identify the inorganic reagent needed for step 2.
Name the organic product of step 2.
[3 marks]
Name of mechanism \qquad
Inorganic reagent \qquad
Name of organic product \qquad

| 0 | 6 | 3 |
| :--- | :--- | :--- | The organic product of step 2 is reacted with concentrated sulfuric acid in step 3.

Outline the mechanism for step 3.
[3 marks]

0	6	4	Draw the repeating unit of polystyrene.

[1 mark]
3. June/ 2019/Paper_2/No. 2

| 0 | 2 |
| :--- | :--- |\quad A student prepared cyclohexene by heating cyclohexanol with concentrated phosphoric acid. The cyclohexene produced was distilled off from the reaction mixture.

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{1}$ Complete the diagram of the apparatus used to distil the cyclohexene from the |
| :--- | :--- | :--- | :--- | reaction mixture at $83^{\circ} \mathrm{C}$.

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{2}$ The distillate was shaken with saturated sodium chloride solution. The cyclohexene |
| :--- | :--- | :--- | was separated from the aqueous solution using a separating funnel.

State why cyclohexene can be separated from the aqueous solution using the separating funnel.
\qquad
\qquad

| 0 | 2 | 3 |
| :--- | :--- | :--- | :--- | The cyclohexene separated in Question 02.2 was obtained as a cloudy liquid.

The student dried this cyclohexene by adding a few lumps of anhydrous calcium chloride and allowing the mixture to stand.

Give one observation that the student made to confirm that the cyclohexene was dry.
[1 mark]
\qquad
\qquad

| 0 | $\mathbf{2}$ | $\mathbf{4}$ | In this preparation, the student added an excess of concentrated phosphoric acid to |
| :--- | :--- | :--- | :--- | 14.4 g of cyclohexanol ($M_{\mathrm{r}}=100.0$).

The student obtained $4.15 \mathrm{~cm}^{3}$ of cyclohexene ($M_{\mathrm{r}}=82.0$).
Density of cyclohexene $=0.810 \mathrm{~g} \mathrm{~cm}^{-3}$
Calculate the percentage yield of cyclohexene obtained.
Give your answer to the appropriate number of significant figures.

0	2	5	Cyclohexene reacts with bromine.

Complete the mechanism for this reaction.
[3 marks]
4. June/2021/Paper_2/No. 4

0	4

Kekulé suggested this structure for benzene.

Benzene is now represented by this structure.

Figure 3 shows the relative stability of

compared to

Figure 3

0	4	1

Table 1

	$\Delta H / \mathrm{kJ} \mathrm{mol}^{-1}$
Enthalpy of atomisation for carbon	+715
Enthalpy of atomisation for hydrogen	+218
Bond enthalpy (C-C)	+348
Bond enthalpy (C=C)	+612
Bond enthalpy (C-H)	+412

ΔH_{2} \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

0	4	2

is more thermodynamically stable than

[1 mark]
\qquad
\qquad
\qquad

0	4	1

Table 1

	$\Delta H / \mathrm{kJ} \mathrm{mol}^{-1}$
Enthalpy of atomisation for carbon	+715
Enthalpy of atomisation for hydrogen	+218
Bond enthalpy (C-C)	+348
Bond enthalpy (C=C)	+612
Bond enthalpy (C-H)	+412

ΔH_{2} \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

0	4	2

is more thermodynamically stable than

[1 mark]
\qquad
\qquad
\qquad

| 0 | 4 | 3 | A mixture of concentrated nitric acid and concentrated sulfuric acid reacts with |
| :--- | :--- | :--- | :--- | benzene.

Figure 4 shows the incomplete mechanism for this reaction.
Name the mechanism.
Complete the mechanism in Figure 4 by adding

- any lone pairs of electrons involved in each step
- two curly arrows in step 1
- a curly arrow in step 2
- a curly arrow in step 3
- a curly arrow in step 4.

Name of mechanism
Figure 4

H^{+}
5. June/2021/Paper_2/No. 8

| 0 | 8 |
| :--- | :--- |\quad This question is about making a diester from cyclohexanol.

| 0 | 8 |
| :--- | :--- | :--- |\(. \begin{aligned} \& 1

\& State the type of reaction in step 1 .\end{aligned}\)
Give the name of the reagent needed for step 1.
[2 marks]
Type of reaction \qquad
Reagent \qquad

0	8	2	State the reagents needed and give equations for step 2 and step 3.

Show the structure of Compound \mathbf{G} in your equations.
[4 marks]
Step 2 reagent \qquad
Step 2 equation

Step 3 reagent \qquad
Step 3 equation

0	8	3

Give the name of the mechanism for this reaction.
Complete the mechanism to show the formation of one ester link in the first step of this reaction.

Mechanism name \qquad
Mechanism

0	8	$\mathbf{4}$	Suggest why chemists usually aim to design production methods

- with fewer steps
- with a high percentage atom economy.

Fewer steps \qquad
\qquad
\qquad
High percentage atom economy \qquad
\qquad
\qquad

