#### AQA - Aromatic chemistry - A2 Chemistry P2

#### 1. June/ 2020/Paper\_2/No.2

0 2 Prilocaine is used as an anaesthetic in dentistry.

Figure 3 shows the structure of prilocaine.

Figure 3

0 2.1 Draw a circle around any chiral centre(s) in Figure 3.

[1 mark]

0 2 . 2 Identify the functional group(s) in the prilocaine molecule.

[1 mark]

Tick  $(\checkmark)$  the box(es) corresponding to the functional group(s).

| Amide | Amine | Ester | Ketone |
|-------|-------|-------|--------|
|       |       |       |        |

0 2 . 3 Prilocaine is completely hydrolysed in the human body to give a mixture of products.

Draw the structures of the two organic products formed in the complete hydrolysis of prilocaine in acidic conditions.

[3 marks]

0 2 . 4 Figure 4 shows optical isomers F and G.

## Figure 4

Isomer **F** is the active compound in the medicine ibuprofen.

In the manufacture of ibuprofen both isomers **F** and **G** are formed. An enzyme is then used to bind to isomer **G** and catalyse its hydrolysis.

After the products of hydrolysis of **G** are removed, a pure sample of isomer **F** is collected.

Explain how a structural feature of this enzyme enables it to catalyse the hydrolysis of isomer  ${\bf G}$  but not the hydrolysis of isomer  ${\bf F}$ .

| isomer & but not the hydrorysis of isomer 1. | [2 marks |
|----------------------------------------------|----------|
|                                              |          |
|                                              |          |
|                                              |          |

#### 2. June/ 2020/Paper 2/No.6

0 6 Polystyrene can be made from benzene in the series of steps shown.



0 6 . 1 State the type of reaction in step 1.

Identify the reagent(s) and conditions needed for step 1.

[3 marks]

Type of reaction \_\_\_\_\_

Reagent(s)

Conditions \_\_\_\_\_

0 6. 2 State the name of the mechanism for the reaction in step 2.

Identify the inorganic reagent needed for step 2.

Name the organic product of step 2.

[3 marks]

Name of mechanism \_\_\_\_\_

Inorganic reagent \_\_\_\_\_

Name of organic product

### solvedpapers.co.uk

0 6. 3 The organic product of step 2 is reacted with concentrated sulfuric acid in step 3.

Outline the mechanism for step 3.

[3 marks]

0 6.4 Draw the repeating unit of polystyrene.

[1 mark]

#### 3. June/ 2019/Paper\_2/No.2

- 0 2 A student prepared cyclohexene by heating cyclohexanol with concentrated phosphoric acid. The cyclohexene produced was distilled off from the reaction mixture.
- 0 2 . 1 Complete the diagram of the apparatus used to distil the cyclohexene from the reaction mixture at 83 °C.

[2 marks]



0 2 2 The distillate was shaken with saturated sodium chloride solution. The cyclohexene was separated from the aqueous solution using a separating funnel.

State why cyclohexene can be separated from the aqueous solution using the separating funnel.

[1 mark]

|         | 301VEdpaper3.20.4K                                                                                                                                                                                                                           |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 2 . 3 | The cyclohexene separated in Question <b>02.2</b> was obtained as a cloudy liquid. The student dried this cyclohexene by adding a few lumps of anhydrous calcium chloride and allowing the mixture to stand.                                 |
|         | Give <b>one</b> observation that the student made to confirm that the cyclohexene was dry.  [1 mark]                                                                                                                                         |
|         |                                                                                                                                                                                                                                              |
| 0 2 . 4 | In this preparation, the student added an excess of concentrated phosphoric acid to 14.4 g of cyclohexanol ( $M_{\rm r}$ = 100.0). The student obtained 4.15 cm³ of cyclohexene ( $M_{\rm r}$ = 82.0). Density of cyclohexene = 0.810 g cm⁻³ |
|         | Calculate the percentage yield of cyclohexene obtained.  Give your answer to the appropriate number of significant figures.  [5 marks]                                                                                                       |
|         |                                                                                                                                                                                                                                              |
|         |                                                                                                                                                                                                                                              |
|         |                                                                                                                                                                                                                                              |
|         |                                                                                                                                                                                                                                              |
|         |                                                                                                                                                                                                                                              |
|         |                                                                                                                                                                                                                                              |
|         | % vield                                                                                                                                                                                                                                      |

0 2 . 5 Cyclohexene reacts with bromine.

Complete the mechanism for this reaction.

[3 marks]

# **4.** June/2021/Paper\_2/No.4

Mekulé suggested this structure for benzene.

Benzene is now represented by this structure.

Figure 3 shows the relative stability of compared to

Figure 3



 $\boxed{ 0 \ 4 }$ .  $\boxed{ 1 }$  Use **Figure 3** and the data shown in **Table 1** to calculate  $\Delta H_2$ 

[3 marks]

Table 1

|                                      | ΔH / kJ mol <sup>-1</sup> |
|--------------------------------------|---------------------------|
| Enthalpy of atomisation for carbon   | +715                      |
| Enthalpy of atomisation for hydrogen | +218                      |
| Bond enthalpy (C–C)                  | +348                      |
| Bond enthalpy (C=C)                  | +612                      |
| Bond enthalpy (C–H)                  | +412                      |

ΔH<sub>2</sub> kJ mol<sup>-1</sup>

0 4 . 2 Explain, in terms of structure and bonding, why

is more thermodynamically stable than

[1 mark]

0 4. 1 Use **Figure 3** and the data shown in **Table 1** to calculate  $\Delta H_2$ 

[3 marks]

Table 1

|                                      | ΔH / kJ mol <sup>-1</sup> |
|--------------------------------------|---------------------------|
| Enthalpy of atomisation for carbon   | +715                      |
| Enthalpy of atomisation for hydrogen | +218                      |
| Bond enthalpy (C–C)                  | +348                      |
| Bond enthalpy (C=C)                  | +612                      |
| Bond enthalpy (C–H)                  | +412                      |

|       | $\Delta H_2$                                    | KJ MOI <sup>-1</sup> |
|-------|-------------------------------------------------|----------------------|
| 0 4.2 | Explain, in terms of structure and bonding, why |                      |
|       | is more thermodynamically stable than           |                      |
|       |                                                 | [1 mark]             |
|       |                                                 |                      |
|       |                                                 |                      |

0 4 . 3

A mixture of concentrated nitric acid and concentrated sulfuric acid reacts with benzene.

Figure 4 shows the incomplete mechanism for this reaction.

Name the mechanism.

Complete the mechanism in Figure 4 by adding

- any lone pairs of electrons involved in each step
- two curly arrows in step 1
- a curly arrow in step 2
- a curly arrow in step 3
- a curly arrow in step 4.

[5 marks]

Name of mechanism

Figure 4

$$O_2N - O$$
 $O_2N - O$ 
 $O_2N - O$ 

$$O_2N - O_2^+$$
 $O_2N^+$ 
 $O_2N^+$ 

$$O_2N^+$$
 Step 3  $O_2N$  +

$$O_2N$$
 $+$ 
 $O_2N$ 
 $O_2N$ 
 $O_2N$ 

- 5. June/2021/Paper\_2/No.8
  - 0 8 This question is about making a diester from cyclohexanol.

0 8 . 1 State the type of reaction in step 1.

Give the name of the reagent needed for step 1.

[2 marks]

Type of reaction \_\_\_\_\_

Reagent

0 8 . 2 State the reagents needed and give equations for step 2 and step 3.

Show the structure of Compound  ${\bf G}$  in your equations.

[4 marks]

Step 2 reagent

Step 2 equation

Step 3 reagent

Step 3 equation

0 8. 3 Cyclohexane-1,2-diol reacts with ethanedioyl dichloride.

Give the name of the mechanism for this reaction.

Complete the mechanism to show the formation of **one** ester link in the first step of this reaction.

[5 marks]

Mechanism name

Mechanism

- 0 8.4 Suggest why chemists usually aim to design production methods
  - · with fewer steps
  - · with a high percentage atom economy.

[2 marks]

High percentage atom economy