AQA – Alkanes – AS Chemistry P2

1.	June/ 2020/Pa	per_2/No.1(1.3_1.5)
	0 1.3	1-chloropropane can also be produced by the reaction between propane and chlorine in the presence of ultraviolet light.
		State why ultraviolet light is needed for this reaction to occur.
		Give an equation for each propagation step in the formation of 1-chloropropane from
		propane. [3 marks]
		Why ultraviolet light is needed
		<u> </u>
		Propagation step 1
		Propagation step 2
	0 1.4	The C–Cl bond in 1-chloropropane is polar because carbon and chlorine have different electronegativities.
		Define the term electronegativity. [1 mark]

solvedpapers.co.uk

0 1.5	Ammonia reacts with 1-ch	loropropane to form propylamine.	
	Name and outline the med		[5 marks]
	Name of mechanism		
	Outline of mechanism		

solvedpapers.co.uk

_					
2	1	2020	/Paper	2/110	
Z	iune/	_ZUZU/	Paper	Z/IVO	

Explain the differences between structural isomerism and stereoisomerism. Use examples to show how compounds with the molecular formula C ₄ H ₈ exhibit stereoisomerism and the three types of structural isomerism.				
	[6 marks]			

solvedpapers.co.uk				

3.	June/ 2020/Pap	per_2/No.7	
	0 7	This question is about ethanedioic acid $(H_2C_2O_4)$ which is a dicarboxylic acid	d.
	0 7.1	Draw the skeletal formula of ethanedioic acid.	[1 mark]
	0 7.2	Ethanedioic acid is formed by the oxidation of ethane-1,2-diol (HOCH ₂ CH ₂ C	DH).
		State suitable reagent(s) and a condition for this reaction.	[2 marks]
		Reagent(s)	
		Condition	

solved	nai	ner	SC	0	ιık
30.00	Pul	5 C .	٠.٠	Ο.	MI.

0 7 . 3 Ethanedioic acid reacts with an excess of sodium hydroxide to form sodium ethanedioate.

$$H_2C_2O_4(aq) + 2 NaOH(aq) \rightarrow Na_2C_2O_4(aq) + 2 H_2O(I)$$

A student mixes 10.0 cm 3 of 0.400 mol dm $^{-3}$ ethanedioic acid with 50.0 cm 3 of 0.200 mol dm $^{-3}$ sodium hydroxide.

Show that the sodium hydroxide is in excess.

Calculate the mass, in mg, of sodium ethanedioate that can be formed in this reaction.

[5 marks]

Mass of sodium ethanedioate mg

4.	June/ 2020/Paper_2/No.9	
	Which statement is correct about thermal cracking?	[1 mark]
	A A pressure between 100 and 200 kPa is used.	0
	B Aromatic hydrocarbons are the major products.	0
	C C-C bonds are broken.	0
	D Zeolite catalysts are used.	0
5.	June/ 2020/Paper_2/No.14 An excess of methane reacts with chlorine in the presence of u	ıltraviolet radiation.
	What are the main products of this reaction?	[1 mark]
	A CCl ₄ and H ₂	0
	B CCl ₄ and HCl	0
	C CH₃Cl and H₂	0
	D CH₃Cl and HCl	0

6. June/ 2019/Paper_2/No.13

Which compound is not an isomer of the following compound?

[1 mark]

A CH₃CH₂COCH₃

0

B CH₃CH=CHCH₂OH

0

C (CH₃)₂CHCHO

0

D CH2=CHCH2CHO

0

7. June/ 2019/Paper_2/No.15

Which equation represents a propagation step?

[1 mark]

A •CH₂Cl + Cl• - CH₂Cl₂

0

 $\textbf{B} \ \bullet \text{CH}_3 + \bullet \text{CH}_3 \rightarrow \text{C}_2\text{H}_6$

0

 $C Cl_2 \rightarrow Cl \cdot + Cl \cdot$

0

D CH₃Cl + Cl• → •CH₂Cl + HCl

0

_					
8	June/	2021	/Paper_	2,	/No.6

0 6

Trichlorofluoromethane (CCl₃F) was developed as a refrigerant. The production and use of CCl₃F is now restricted.

0 6 . 1

The equation for a process used to manufacture CCl₃F is

$$\mathsf{SbF_3Br_2} + \mathsf{CCl_4} \to \mathsf{CCl_3F} + \mathsf{SbF_2Br_2Cl}$$

Calculate the percentage atom economy for the production of CCl₃F in this reaction. Give your answer to 3 significant figures.

[2 marks]

Percentage atom economy _____

An alternative synthesis of CCl_3F is the free-radical substitution reaction between fluoromethane (CH_3F) and chlorine.

0 6 . 2

An intermediate in this alternative synthesis is dichlorofluoromethane (CHCl₂F)

Give equations to represent the two propagation steps in the conversion of $CHCl_2F$ into CCl_3F

[2 marks]

Propagation step 1

Propagation step 2

solvedpapers.co.uk

0 6. 3 Analysis of the products of this reaction shows the formation of a compound with the empirical formula CCl₂F

Give an equation to represent a termination step forming this compound. Show the structural formula of the product in the equation.

[1 mark]

9. June/ 2021/Paper_2/No.8

When hexadecane ($C_{16}H_{34}$) is heated to a high temperature, one molecule of hexadecane decomposes to form an alkane containing eight carbon atoms and two different unsaturated compounds.

Which equation could represent this reaction?

[1 mark]

$$A \ C_{16}H_{34} \rightarrow C_8H_{16} + C_5H_{12} + C_3H_6$$

$$\label{eq:BC16} \textbf{B} \ \ C_{16}H_{34} \to C_8H_{18} + C_6H_{10} + C_2H_6$$

$$\textbf{C} \quad C_{16}H_{34} \rightarrow C_{8}H_{18} + 2\,C_{2}H_{4} + C_{4}H_{8}$$

$$\label{eq:DC16} \textbf{D} \ \ C_{16}H_{34} \to C_8H_{18} + C_6H_{14} + C_2H_2$$

10. June/ 2021/Paper_2/No.9

The diagram shows a fractionating column used in the industrial fractional distillation of crude oil.

Which statement is correct?

[1 mark]

- A The most viscous product is fuel oil.
- B The boiling point of naphtha is higher than diesel oil.
- C Molecules in diesel oil are held together by hydrogen bonds.
- D Kerosene is a mixture of compounds.