AQA – Acids and bases – A2 Chemistry P3

1. June/ 2020/Paper 3/No.7

When heated, a sample of potassium chlorate(V) (KClO $_3$) produced 67.2 cm 3 of oxygen, measured at 298 K and 110 kPa

$$2\,KClO_3(s) \rightarrow 2\,KCl(s) + 3\,O_2(g)$$

What is the amount, in moles, of potassium chlorate(V) that has decomposed?

The gas constant, $R = 8.31 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$

[1 mark]

A 9.95×10^{-4}

B 1.99×10^{-3}

0

C 2.99×10^{-3}

0

D 4.48×10^{-3}

0

2. June/ 2020/Paper_3/No.13

Which statement about pH is correct?

[1 mark]

A The pH of a weak base is independent of temperature.

B At temperatures above 298 K, the pH of pure water is less than 7.

0

C The pH of 2.0 mol dm⁻³ nitric acid is approximately 0.30

0

D The pH of 0.10 mol dm⁻³ sulfuric acid is greater than that of 0.10 mol dm⁻³ hydrochloric acid.

0

3. June/ 2020/Paper 3/No.14

A $0.10\,\mathrm{mol\,dm^{-3}}$ aqueous solution of an acid is added slowly to $25\,\mathrm{cm^3}$ of a $0.10\,\mathrm{mol\,dm^{-3}}$ aqueous solution of a base.

Which acid-base pair has the highest pH at the equivalence point?

[1 mark]

A CH₃COOH and NaOH

0

B CH₃COOH and NH₃

0

C HCl and NaOH

0

D HCl and NH₃

0

4. June/ 2020/Paper_3/No.32

Which is the concentration of NaOH(aq), in mol dm⁻³, that has pH = 14.30?

 $K_{\rm w}$ = 1.00 × 10⁻¹⁴ mol² dm⁻⁶ at 25 °C

[1 mark]

A -1.16

B 5.01×10^{-15}

 $C 2.00 \times 10^{14}$

D 2.00

5. June/ 2020/Paper_3/No.34

What is the pH of 0.015 mol dm⁻³ sulfuric acid?

[1 mark]

A -1.82

B -1.52

C 1.52

D 1.82

0

6 .	June/	2020/	/Paper	3/N	lo.36

A student rinsed the apparatus before starting an acid-base titration.

The results of the titration showed that the volume of acid added from the burette was larger than expected.

Which is a possible reason for this?

	mark'	٠
11	mark	ı
	III GII I	ı

Α	The conical flask was rinsed with water before the titration.	0
В	The walls of the conical flask were rinsed with water during the titration.	0
С	The pipette was rinsed only with water.	0
D	The burette was rinsed only with water	

7.	June/ 2019/Pag	per_3/No.2	
	0 2	This question is about sulfuric acid and its salts.	
	0 2.1	Draw the displayed formula of a molecule of H ₂ SO ₄	[1 mark]
	0 2.2	In aqueous solution, sulfuric acid acts as a strong acid. The H_2SO_4 dissociate HSO_4^- ions and H^+ ions.	s to form
		The ${\sf HSO_4}^-$ ions act as a weak acid and dissociate to form ${\sf SO_4}^{2-}$ ions and ${\sf H}^+$	ions.
		Give an equation to show each stage in the dissociation of sulfuric acid in aqueous solution.	
		Include appropriate arrows in your equations.	[2 marks]
		Equation 1	
		Equation 2	

solvedpapers.co.uk

0 2 . 3

0 2 . 3	A student is required to make 250 cm ³ of an aqueous solution that contains an accurately measured mass of sodium hydrogensulfate (NaHSO ₄).				
	Describe the method that the student should use to make this solution.	[4 marks]			
	Extra space				

solvedpapers.co.uk

0 2 . 4	0 2 . 4 A solution that contains 605 mg of NaHSO ₄ in 100 cm ³ of solution has a pH of		
	Calculate the value of K_a for the hydrogensulfate ion (HSO ₄ ⁻) that is behaving as a weak acid. Give your answer to three significant figures.		
	State the units of $K_{\rm a}$ [6 mar	ks]	
0 2 . 5	Some sodium sulfate is dissolved in a sample of the solution from question 02.4. Explain why this increases the pH of the solution. [2 market]	ks]	
		—	

8. June/2021/Paper_3/No.5

A mixture of methanoic acid and sodium methanoate in aqueous solution acts as an acidic buffer solution.

The equation shows the dissociation of methanoic acid.

$$HCOOH(aq) \rightleftharpoons HCOO^{-}(aq) + H^{+}(aq)$$

Calculate the mass, in g, of sodium methanoate (HCOONa) that must be added to $25.0~\rm cm^3$ of $0.100~\rm mol~dm^{-3}$ methanoic acid to produce a buffer solution with pH = $4.05~\rm at~298~K$

For methanoic acid, p K_a = 3.75 at 298 K

solvedpapers.co.uk

A (1 ())		6.41	10.00		
Assume that the	volume (of the s	solution	remains	constant.

[5 marks]

Mass _____ g