AQA - Particle model and pressure - GCSE Physics


1. June/2021/Paper_1F/No.8

0 8 A

A teacher demonstrated the relationship between the pressure in a gas and the volume of the gas.

Figure 12 shows the equipment used.

Figure 12

0 8.1	What is the range of the		[1 mark]
	Tick (\checkmark) one box.		[Timerit]
	From 0 to 1 cm ³		
	From 0 to 5 cm ³		
	From 0 to 25 cm ³		
0 8 . 2	The relationship between	n the pressure and volume of a gas is given by the ed	γuation:
		pressure × volume = constant	
	Complete the sentence.		[1 mark]

For this equation to apply, both the mass of gas and the

of the gas must stay the same.

solvedpapers.co.uk

0 8 . 3	The initial volume of the gas in the syringe was 12 cm ³ .	
	The initial pressure of the gas in the syringe was 101 000 Pa.	
	Calculate the constant in the equation below.	
	pressure × volume = constant	[2 marks]
	Constant =	Pa cm³
0 8 . 4	The teacher pulled the plunger slowly outwards and the gas expanded.	
	The new volume of the gas was 24 cm ³ .	
	Calculate the new pressure in the gas.	
	The constant has the same value as in Question 08.3	[3 marks]
	New pressure =	Pa

solvedpapers.co.uk

(8 . 5	Which change occurs when the plunger is pulled slowly outwards?			
		Tick (✓) one box.		[1 mark]	
		The gas particles stop moving.			
		There are more frequent collisions between the gas particles.			
		There is more space between the gas particles.			

2. June/2021/Paper_1H/No.9

0 9

A teacher demonstrated the relationship between the pressure in a gas and the volume of the gas.

Figure 12 shows the equipment used.

Pressure gauge

Syringe

Plunger

This is the method used.

- 1. Record the initial volume of gas in the syringe and the pressure reading before any weights are attached.
- 2. Attach a 2.0 N weight to the syringe.
- 3. Record the volume of the gas and the reading on the pressure gauge.
- 4. Repeat steps 2 and 3 until a weight of 12.0 N is attached to the syringe.

solvedpapers.co.uk

O 9 . 1 What was the range of force used?

From _____ N to ____ N

O 9 . 2 Give one control variable in the investigation.

[1 mark]

solvedpapers.co.uk

0 9 . 3	When the volume of gas in the syringe was 45 cm³, the pressure gauge showed a value of 60 kPa.
	Calculate the pressure in the gas when the volume of gas in the syringe was 40 cm ³ . [4 marks]
	•
	Pressure = kPa
0 9.4	When the volume of gas in the syringe increased, the pressure on the inside walls of the syringe decreased.
	Explain why.
	[3 marks]