AQA – Genetic information, variation and relationships between organisms – A2 Biology

1.	June/2021/Pap	per_1/No.5	
	0 5 . 1	Describe how a sample of chloroplasts could be isolated from leaves.	[4 marks
			[+ marks

0	5		2	Scientists grew two groups of	olants
---	---	--	---	-------------------------------	--------

- control plants with all the inorganic ions needed
- iron-deficient plants with all the inorganic ions needed but without iron ions.

After 1 week, the scientists measured the mass of protein and the mass of chlorophyll in the chloroplasts isolated from samples of leaves of these two groups of plants.

Table 4 shows the scientists' results.

Table 4

Mass of protein / percentage of control	Mass of chlorophyll / percentage of control
40	10

Some proteins found inside the chloroplast are synthesised inside the chloroplast.

Give **one** feature of the chloroplast that allows protein to be synthesised inside the chloroplast **and** describe **one** difference between this feature in the chloroplast and similar features in the rest of the cell.

[2 marks]

Feature		
Structural difference		
_		

0 5 . 3 The ratio of protein to chlorophyll in control plants is 9:1

Use the information in **Table 4** to calculate the ratio of protein to chlorophyll in iron-deficient plants.

[1 mark]

Ratio_____

The scientists also observed the chloroplasts from the samples of leaves using an electron microscope.

0 5 . 4

	Figure 6 shows a chloroplast from a control plant (image ${\bf A}$) and a chloroplast from an ron-deficient plant (image ${\bf B}$).
	Figure 6
	This source has been removed due to third-party copyright restrictions.
l	Use Figure 6 to suggest why iron-deficient plants have a reduced growth rate. [3 marks]
-	
-	
-	
-	
-	
-	
_	

- 2. June/2021/Paper_1/No.6
 - 0 6. 1 Figure 7 shows the mean distance between centromeres and the poles (ends) of the spindle during mitosis.

Figure 7

Calculate the rate of movement of the centromeres during phase E.

Give your answer in μm minute⁻¹ and to 3 decimal places.

[2 marks]

µm minute⁻¹

0 6. 2 Name the three phases of mitosis shown by C, D and E on Figure 7.

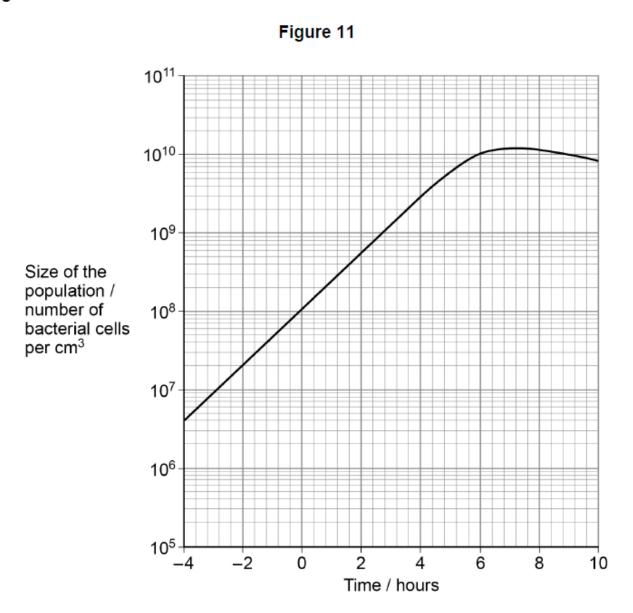
	[5 m
c	

3.	lune	/2021	/Paper_	1.	/No.9
v.	Julic	/ 2021	, i apci	/	110.5

0 9 . 1 Complete **Table 7** with ticks (✓) to show which elements are found in the following biological molecules.

[2 marks]

Table 7


Biological malesules	Element					
Biological molecules	Carbon	Nitrogen	Oxygen	Phosphorus		
Galactose						
Phospholipid						
RNA						
Sucrose						

After Watson and Crick proposed the model of DNA structure, scientists investigated the possible mechanisms for DNA replication.

Two scientists grew a bacterial population, providing them with a nitrogen source containing only the heavy isotope of nitrogen, ¹⁵ N. As soon as all the DNA in this population contained ¹⁵ N, the scientists changed the nitrogen source to one containing only the lighter isotope of nitrogen, ¹⁴ N. They changed the nitrogen source at 0 hours.

During the investigation, the scientists measured the size of the population of bacterial cells.

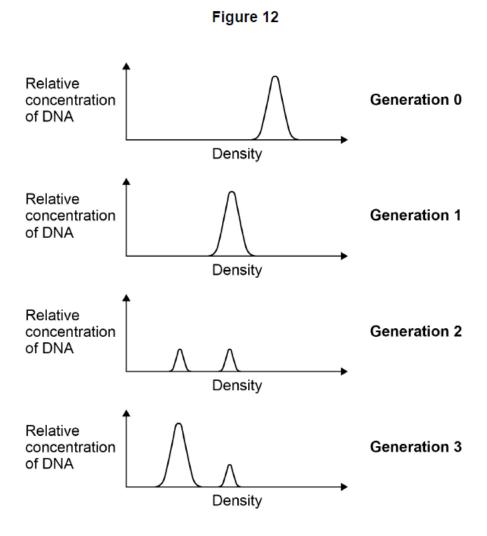
Figure 11 shows the scientists' results.

0 9 . 2

The generation time for a population of bacteria is the time taken for all the bacteria to divide once by binary fission.

Use **Figure 11** and the following equation to calculate the generation time for this population of bacteria. Give your answer in hours.

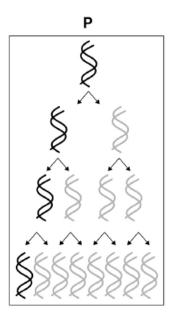
[2 marks]

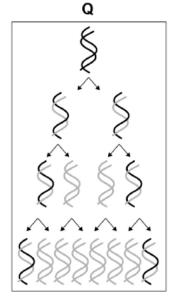

$$\text{Number of generations} = \frac{\log_{10} \left(\frac{\text{size of population at time } + 4 \text{ hours}}{\text{size of population at time } - 4 \text{ hours}} \right)}{\log_{10} 2}$$

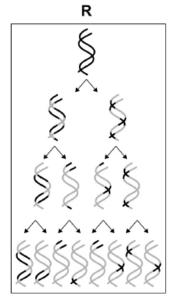
Generation time hours

At intervals during this investigation, the scientists removed samples of the bacterial population, isolated the DNA and measured the density of the DNA.

DNA made using 15 N has a higher density than DNA made using 14 N.


Figure 12 shows the scientists' results.




There are three possible models of DNA replication.

These models are shown in Figure 13.

Figure 13

0 9 . 3

Which of these models, P, Q or R, is supported by the results shown in Figure 12?

Give the letter and name of the model supported and explain why the results do **not** support the other models.

Name ____

[3 marks]

Model _____

Explanation for first unsupported model

Explanation for second unsupported model


4	lune	/2021	/Paper	1/	No.	10

1 0 . 1	Describe the structure of DNA.	[5 marks]

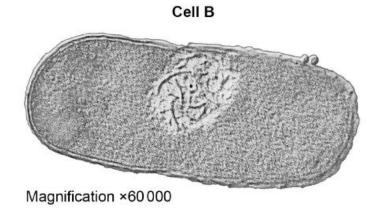

1 0 . 2	Name and describe five ways substances can move across the cell-surface membrane into a cell.				
		[5 marks]			

Figure 14 shows transmission electron micrographs of two cells, one animal cell and one prokaryotic cell.

Figure 14

1 0.3	Contrast the structure of the two cells visible in the electron micrographs sh			
	rigule 14.	[5 marks]		