
AQA - Forces and motion – GCSE Physics

1.	June/2021/Pap	er_2F/No.2(2.6_2.9)
	0 2.6	What is the change in velocity of the cyclist in the first 20 seconds of the journey? [1 mar]
		Tick (✓) one box.
		5.2 m/s
		5.4 m/s
		5.6 m/s
		5.8 m/s
	0 2 . 7	Determine the acceleration of the cyclist during the first 20 seconds of the journey.
		Use your answer from Question 02.6
		Use the equation:
		$acceleration = \frac{change in velocity}{time taken}$
		[2 marks

Acceleration of the cyclist = _____ m/s²

0 2 . 9 The cyclist travels from home to school.

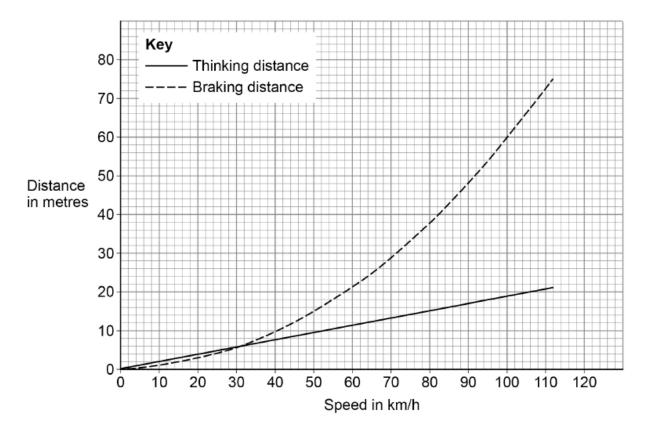
Figure 7 shows the route the cyclist followed.

Draw an arrow on Figure 7 to show the displacement of the cyclist.

[1 mark]

2.	June/2021/Paper_2F/No.7(7.6_7.7)				
	0 7.6	Write down the equation which links distance travelled (s), speed (v) and time	e (<i>t</i>). [1 mark]		
	0 7.7	The conveyor belt moves a can at a speed of 1.7 m/s.			
		Calculate the time taken to move the can 3.3 m at this speed.			
		Give your answer to 2 significant figures.	[4 marks		
		Time taken (2 significant figures) =	5		

3.


June/2021/Paper_2F/No.8(8.1_8.4)		
0 8	The thinking distance and braking distance for a car vary with the speed of the ca	ar.
0 8.1	Explain the effect of two other factors on the braking distance of a car.	
	Do not refer to speed in your answer. [4 m	arks]

0 8 . 2	Which equation links acceleration (a), mass	(m) and resultant force (F).	[1 mark]
	Tick (✓) one box.		
	resultant force = mass × acceleration		
	resultant force = mass × acceleration ²		
	resultant force = $\frac{\text{mass}}{\text{acceleration}^2}$		
	resultant force = $\frac{\text{mass}}{\text{acceleration}}$		
0 8.3	The mean braking force on a car is 7200 N.		
	The car has a mass of 1600 kg.		
	Calculate the deceleration of the car.		[3 marks]
	De	celeration =	m/s ²

0 8 . 4

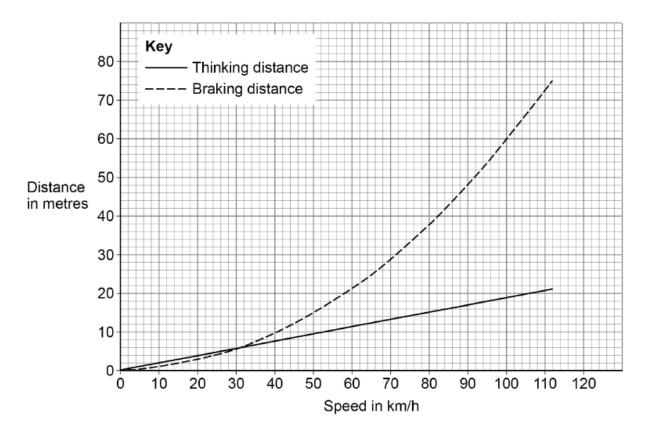
Figure 18 shows how the thinking distance and braking distance for a car vary with the speed of the car.

Figure 18

Determine the stopping distance when the car is travelling at 80 km/h.	[2 marks]

Stopping distance =

m


June/2021/Pap	per_2H/No.1(1.1_1.4)	
0 1	The thinking distance and braking distance for a car vary with the speed of	the car.
0 1.1	Explain the effect of two other factors on the braking distance of a car.	
	Do not refer to speed in your answer.	[4 marks]

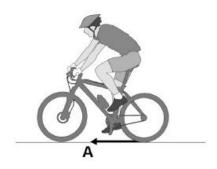
0 1 . 2	Which equation links acceleration (a), mass	(m) and resultant force (F).	[1 mark]
	Tick (✓) one box.		[
	resultant force = mass × acceleration		
	resultant force = mass × acceleration ²		
	resultant force = $\frac{\text{mass}}{\text{acceleration}^2}$		
	resultant force = $\frac{\text{mass}}{\text{acceleration}}$		
0 1.3	The mean braking force on a car is 7200 N.		
	The car has a mass of 1600 kg.		
	Calculate the deceleration of the car.		[3 marks]
	De	eceleration =	m/s ²

0 1 . 4 Figure 1

Figure 1 shows how the thinking distance and braking distance for a car vary with the speed of the car.

Figure 1

Determine the stopping distance when the car is travelling at 80 km/h.	

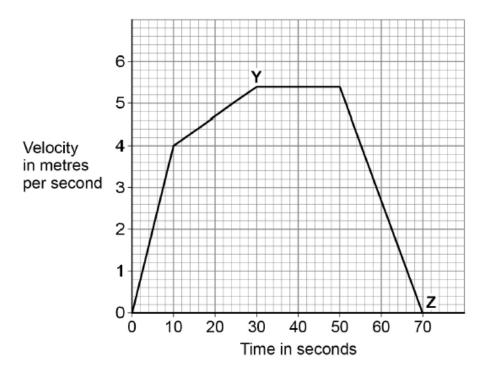

Stopping distance =

5. June/2021/Paper_2H/No.7

0 7 Figure 11 shows a cyclist riding a bicycle.

Force A causes the bicycle to accelerate forwards.

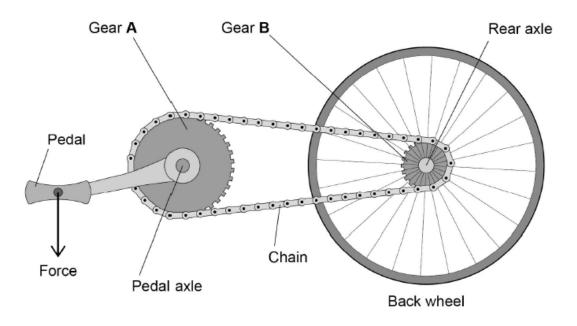
Figure 11



0 7. 1 What name is given to force A?

[1 mark]

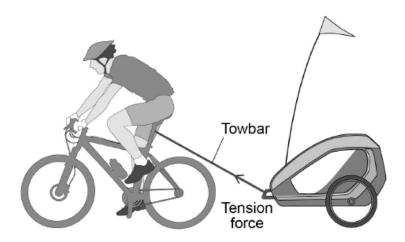
Figure 12 shows how the velocity of the cyclist changes during a short journey.


Figure 12

0 7 . 2	Determine the distance travelled by the cyclist between ${\bf Y}$ and ${\bf Z}$.	[3 marks]
	Distance travelled by the cyclist between Y and Z =	m

0 7 . 3 Figure 13 shows the gears on the bicycle.

Figure 13



Describe how the force on the pedal causes a moment about the rear axle.

[2 marks]

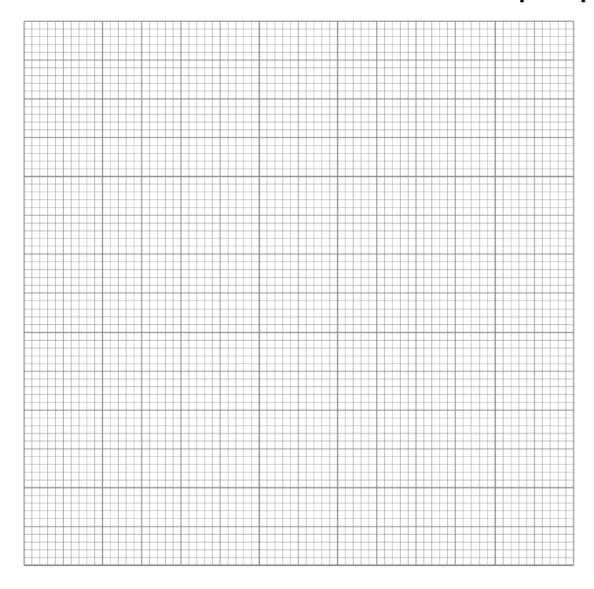
Figure 14 shows a different cyclist towing a trailer.

Figure 14

0 7.4	The speed of the cyclist and trailer increased uniformly from 0 m/s to 2.4 m/s. The cyclist travelled 0.018 km while accelerating.	S.
	Calculate the initial acceleration of the cyclist.	[3 marks

Acceleration =

 m/s^2


solvedpapers.co.uk

0 7.5	The resultant force of the towbar on the trailer has a horizontal component and a vertical component.

horizontal force = 200 N vertical force = 75 N

Determine the magnitude and direction of the resultant force of the towbar on the trailer by drawing a vector diagram.

[4 marks]

Magnitude of force = _____ N

Direction of force = _____ degrees