## AQA - Force and elasticity - GCSE Physics

**1.** June/2021/Paper\_2F/No.4(4.1\_4.5)

A student investigated how the angle of a ramp affects the force required to hold a trolley stationary on the ramp.

Figure 10 shows the equipment used.

Force

Newtonmeter

String

Ramp

Trolley

0 4 . 1 Measure the angle Y in Figure 10

[1 mark]

Angle Y = \_\_\_\_\_ degrees

Figure 11 shows the newtonmeter before the investigation started.

Figure 11



| 0 4.2 | What type of error is shown on the newtonmeter in Figure 11?            | [1 mark] |
|-------|-------------------------------------------------------------------------|----------|
|       | Tick (✓) one box.                                                       | •        |
|       | Human error                                                             |          |
|       | Random error                                                            |          |
|       | Zero error                                                              |          |
|       |                                                                         |          |
| 0 4.3 | How can this error be corrected after the measurements have been taken? | [1 mark] |
|       | Tick (✓) one box.                                                       | [1 mark] |
|       | Add 0.5 N to each measurement                                           |          |
|       | Multiply each measurement by 0.5 N                                      |          |
|       | Subtract 0.5 N from each measurement                                    |          |

Table 2 shows the corrected results.

Table 2

| Angle of ramp in degrees | Force in newtons |
|--------------------------|------------------|
| 5                        | 0.9              |
| 10                       | 1.7              |
| 15                       | 2.6              |
| 20                       | 3.4              |
| 25                       | 4.2              |
| 30                       | 5.0              |

Figure 12 is an incomplete graph of the results

Figure 12



0 4 . 4 Plot the missing results from Table 2 on Figure 12.

[2 marks]

0 4 . 5 Figure 13 shows a person in a wheelchair using two different ramps to enter a van.

Figure 13



The ramps are at different angles to the ground.

Explain one advantage of using the long ramp compared with using the short ramp.

[2 marks]

**2.** June/2021/Paper\_2F/No.9

0 9

Figure 20 shows a child on a playground toy.

Figure 20



0 9 . 1 The springs have been elastically deformed.

Explain what is meant by 'elastically deformed'.

[2 marks]

A student investigated the relationship between the force applied to a spring and the extension of the spring.

Figure 21 shows the results.

Figure 21



| 0 9 . 2 | Describe a method the student could use to obtain the results given in Figu      | ire 21.   |
|---------|----------------------------------------------------------------------------------|-----------|
|         | You should include a risk assessment for <b>one</b> hazard in the investigation. |           |
|         | Your answer may include a diagram.                                               | [6 marks] |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |
|         |                                                                                  |           |

0 9 . 3
Which equation links extension (e), force (F) and spring constant (k).

Tick (✓) one box.

force = spring constant × (extension)²

force = spring constant × extension

force = extension / spring constant

force = spring constant / extension

Figure 21 is repeated below.

Figure 21



| 0 9 . 4 | Determine the spring constant of the spring.                                               |
|---------|--------------------------------------------------------------------------------------------|
|         | Use Figure 21.                                                                             |
|         | [3 marks]                                                                                  |
|         |                                                                                            |
|         |                                                                                            |
|         |                                                                                            |
|         |                                                                                            |
|         |                                                                                            |
|         | Spring constant = N/m                                                                      |
|         |                                                                                            |
|         |                                                                                            |
|         |                                                                                            |
| 0 9 . 5 | The student concluded:                                                                     |
|         | 'The extension of the spring is directly proportional to the force applied to the spring.' |
|         | Describe how Figure 21 supports the student's conclusion.                                  |
|         | [2 marks]                                                                                  |
|         |                                                                                            |
|         |                                                                                            |
|         |                                                                                            |
|         |                                                                                            |
|         |                                                                                            |

| 0 9.6 | The student repeated the investigation using a different spring with a spring constant of 13 N/m. |
|-------|---------------------------------------------------------------------------------------------------|
|       | Calculate the elastic potential energy of the spring when the extension of the spring was 20 cm.  |
|       | Use the Physics Equations Sheet. [3 marks]                                                        |
|       |                                                                                                   |
|       |                                                                                                   |
|       |                                                                                                   |
|       |                                                                                                   |
|       | Elastic potential energy = J                                                                      |

- **3.** June/2021/Paper\_2H/No.2
  - 0 2 Figure 3 shows a child on a playground toy.

Figure 3



0 2 . 1 The springs have been elastically deformed.

Explain what is meant by 'elastically deformed'.

[2 marks]

A student investigated the relationship between the force applied to a spring and the extension of the spring.

Figure 4 shows the results.

Figure 4



Describe a method the student could use to obtain the results given in Figure 4.

| You should include a risk assessment for <b>one</b> hazard in the investigation. |           |
|----------------------------------------------------------------------------------|-----------|
| Your answer may include a diagram.                                               |           |
|                                                                                  | [6 marks] |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |

0 2 . 3
Which equation links extension (e), force (F) and spring constant (k).

Tick (✓) one box.

force = spring constant × (extension)²

force = spring constant × extension

force = extension / spring constant

force = spring constant

Figure 4 is repeated below.





| 0 2 . 4 | Determine the spring constant of the spring.                                               |
|---------|--------------------------------------------------------------------------------------------|
|         | Use Figure 4. [3 marks]                                                                    |
|         | [3 Illarks]                                                                                |
|         |                                                                                            |
|         |                                                                                            |
|         |                                                                                            |
|         |                                                                                            |
|         | Spring constant = N/m                                                                      |
|         |                                                                                            |
|         |                                                                                            |
| 0 2.5   | The student concluded:                                                                     |
|         | 'The extension of the spring is directly proportional to the force applied to the spring.' |
|         | Describe how <b>Figure 4</b> supports the student's conclusion.                            |
|         | [2 marks]                                                                                  |
|         |                                                                                            |
|         |                                                                                            |
|         |                                                                                            |
|         |                                                                                            |

| The student repeated the investigation using a different spring with a spring constant of 13 N/m. |
|---------------------------------------------------------------------------------------------------|
| Calculate the elastic potential energy of the spring when the extension of the spring was 20 cm.  |
| Use the Physics Equations Sheet.  [3 marks]                                                       |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
| Elastic potential energy = J                                                                      |
|                                                                                                   |