AQA - Force and elasticity – GCSE Combined Science Physics

1.

June/2021/Pap	er_2F/No.5(5.1_5.2)		
0 5	Scientists are developing a jet aeroplanes.	rocket aeroplane designed to	travel much faster than
0 5.1	The rocket aeroplane must	accelerate along a runway to	take off.
	What would happen to the a it accelerates?	ir resistance acting on the ro	ocket aeroplane as
			[1 mark
0 5.2	An upward force called lift w	vill act on the wings of the roo	cket aeroplane when it moves
	Complete the sentence.		
	Choose the answer from the	e box.	[1 mark
			Į man,
	less than	the same as	greater than
	As the rocket aeroplane starts to accelerate along the runway, the lift force on		
	the wings will be		the
	weight of the rocket aeropla	ne.	

2. June/2021/Paper_2F/No.6

0 6 Figure 8 shows a stretched spring.

The spring is elastically deformed.

Figure 8

0 6.1	What is meant by 'elastically deformed'?	
	Tick (✓) one box.	[1 mark]
	As the force on the spring increases the length of the spring increases.	
	Only a very small force is needed to stretch the spring.	
	The force on the spring causes it to change shape.	
	The spring will return to its original length when the force is removed.	

0 6 . 2	Describe a method to determine the extension of the spring.	[2 marks]
0 6.3	The extension of the spring is 80 mm.	
	spring constant = 40 N/m	
	Calculate the elastic potential energy of the spring.	
	Use the Physics Equations Sheet.	[3 marks]
	Elastic potential energy =	J

solvedpapers.co.uk

Write down the equation which links extension (e), force (F) and spring constant (k).

[1 mar

0 6.5 A force of 300 N acts on a different spring.

The force causes the spring to extend by 0.40 m.

Calculate the spring constant of the spring.

[3 marks]

Spring constant = N/m

3. June/2021/Paper_2H/No.1

0 1 Figure 1 shows a stretched spring.

The spring is elastically deformed.

Figure 1

0 1.1	What is meant by 'elastically deformed'? Tick (✓) one box.	
	As the force on the spring increases the length of the spring increases.	
	Only a very small force is needed to stretch the spring.	
	The force on the spring causes it to change shape.	
	The spring will return to its original length when the force is removed.	

0 1.2	Describe a method to determine the extension of the spring.	[2 marks]
0 1.3	The extension of the spring is 80 mm.	
	spring constant = 40 N/m	
	Calculate the elastic potential energy of the spring.	
	Use the Physics Equations Sheet.	[3 marks]
	Elastic potential energy =	J

0 1.4	Write down the equation which links extension (e), force (F) and spring cons	stant (<i>k</i>). [1 mark]
0 1.5	A force of 300 N acts on a different spring.	
	The force causes the spring to extend by 0.40 m.	
	Calculate the spring constant of the spring.	[3 marks]
	Spring constant =	N/m