AQA - Energy and Power - GCSE Physics

- 1. June/2021/Paper_1F/No.6
 - 0 6 Figure 10 shows a house with a solar power system.

The solar cells generate electricity.

When the electricity generated by the solar cells is not needed, the energy is stored in a large battery.

Figure 10

0 6 . 1 The solar cells on the roof of the house always face in the same direction.

Explain one disadvantage caused by the solar cells only facing in one direction.

[2 marks]

0 6.2	The mean current from the solar cells to the battery is 3.5 A.	
	Calculate the charge flow from the solar cells to the battery in 3600 seconds	S .
	Use the equation: charge flow = current × time	[2 marks]
	Charge flow =	c
0 6.3	Write down the equation which links efficiency, total power input and useful power output.	[1 mark]
0 6.4	At one time in the day, the total power input to the solar cells was 7500 W. The efficiency of the solar cells was 0.16	
	Calculate the useful power output of the solar cells.	[3 marks]
	Useful power output =	W

0 6 . 5	The wasted energy that is not usefully transferred by the solar cells is dis	sipated.
	What happens to energy that has been dissipated?	[4 mork]
	Tick (✓) one box.	[1 mark]
	The energy becomes less useful.	
	The energy is destroyed.	
	The energy is used to generate electricity.	
0 6.6	Why is it unlikely that all the UK's electricity needs could be met by solar power systems?	
	Tick (✓) one box.	[1 mark]
	A very large area would need to be covered with solar cells.	
	Solar power is a non-renewable energy resource.	
	The efficiency of solar cells is too high.	

2. June/2021/Paper_1F/No.7

0 7 Figure 11 shows a diver about to dive off a diving board.

Figure 11

0 7 . 1 Complete the sentences.

Choose answers from the box.

[2 marks]

elastic potential	gravitational potential	kinetic	nuclear	

her _____ energy.

As the diver falls towards the water there is an increase in

As the diver falls towards the water there is a decrease in

As the divertalis towards the water there is all increase in

her _____energy

solvedpapers.co.uk Write down the equation which links kinetic energy (E_k) , mass (m) and speed (v). [1 mark] At the instant the diver hits the water, the kinetic energy of the diver is 5040 J. 0 7 The speed of the diver is 12 m/s. Calculate the mass of the diver. [3 marks] Most of the kinetic energy of the diver is transferred to the water. How does this affect the thermal energy of the water? [1 mark] Tick (\checkmark) one box. The thermal energy decreases. The thermal energy stays the same.

The thermal energy increases.

3.	June/2021/Pap	per_1H/No.2
	0 2	Energy from the Sun is released by nuclear fusion.
	0 2.1	Complete the sentences. [2 marks]
		Nuclear fusion is the joining together of
		During nuclear fusion the total mass of the particles
	0 2 . 2	Nuclear fusion of deuterium is difficult to achieve on Earth because of the high temperature needed.
		Electricity is used to increase the temperature of 4.0 g of deuterium by 50 000 000 $^{\circ}$ C.
		specific heat capacity of deuterium = 5200 J/kg °C
		Calculate the energy needed to increase the temperature of the deuterium by 50 000 000 $^{\circ}\text{C}.$
		Use the Physics Equation Sheet. [3 marks]
		Energy =

0 2 . 3	The idea of obtaining power from nuclear fusion was investigated using mod	dels.
	The models were tested before starting to build the first commercial nuclear power station.	fusion
	Suggest two reasons why models were tested.	[2 marks]
	1	
	2	
0 2 . 4	Generating electricity using nuclear fusion will have fewer environmental eff generating electricity using fossil fuels.	ects than
	Explain one environmental effect of generating electricity using fossil fuels.	[2 marks]

4. June/2021/Paper_1H/No.5

During one year, 1.25×10^{18} J of energy was transferred from the National Grid. number of seconds in 1 year = 3.16×10^7

Calculate the mean energy transferred from the National Grid each second.

Give your answer to 3 significant figures.	[2 marks

Energy each second (3 significant figures) = _____ J

Figure 5 shows a house with a solar power system.

The solar cells generate electricity.

When the electricity generated by the solar cells is not needed, the energy is stored in a large battery.

Figure 5

0 5 . 2 The charge flow through the cable between the solar cells and was 27 000 coulombs.	the battery in 24 hours
Calculate the mean current in the cable.	[4 marks]
Mean current =	A
0 5 . 3 At one time, the total power input to the solar cells was 7.8 kW The efficiency of the solar cells was 0.15	'.
Calculate the useful power output of the solar cells.	[3 marks]
Useful power output =	w

0 5 . 4	It is unlikely that all of the electricity that the UK needs can be generated power systems.	d by solar
	Explain why.	[2 marks]

5. June/2021/Paper_1H/No.8

0 8

Figure 11 shows a toy car in different positions on a racing track.

Figure 11

0 8 . 1	The toy car and racing track can be modelled as a closed system.	
	Why can the toy car and racing track be considered 'a closed system'?	[1 mark
	Tick (✓) one box.	[1 mark
	The racing track and the car both have gravitational potential energy.	
	The racing track and the car are always in contact with each other.	
	The total energy of the racing track and the car is constant.	

0 8 . 2	The car is released from rest at position A and accelerates due to gravity down the track to position B .
	mass of toy car = 0.040 kg
	vertical height between position A and position B = 90 cm
	gravitational field strength = 9.8 N/kg
	Calculate the maximum possible speed of the toy car when it reaches position B . [5 marks]
	· · · · · · · · · · · · · · · · · · ·
	Speed =m/s

Figure 11 is repeated below.

0 8 . 3	At position C the car's gravitational potential energy is 0.20 J greater than at position B .	
	How much kinetic energy does the car need at position ${\bf B}$ to complete the loo the track?	p of
	Give a reason for your answer.	
	Tick (✓) one box.	2 marks]
	Less than 0.20 J	
	Exactly 0.20 J	
	More than 0.20 J	
	Reason	