<u>AQA - Energy and Power – GCSE Combined Science Physics</u>

1. June/2021/Paper_1F/No.2

0 2 In a sport called far-leaping, an athlete uses a long pole to cross a river.

Figure 4 shows an athlete far-leaping.

Figure 5 shows the athlete in different stages of far-leaping.

solvedpapers.co.uk

Choose answers from the box.

Chemical nuclear kinetic
elastic potential gravitational potential

Between positions A and B the athlete speeds up. There is
an increase in the athlete's _______ energy and
a decrease in the athlete's ______ store of energy.

a decrease in the athlete's _______ store of energy.

Between positions B and C the athlete jumps to the pole and climbs up it.

Which statement describes a change in the athlete's energy between positions B and C?

Tick (✓) one box.

Elastic potential energy decreases.

Elastic potential energy increases.

Gravitational potential energy increases.

Gravitational potential energy increases.

0 2.3	The pole falls over from position ${\bf C}$. The athlete lets go of the pole and lands at position ${\bf D}$.				
	The change in height of the athlete between positions ${\bf C}$ and ${\bf D}$ is 3.0 m.				
	mass of athlete = 50 kg				
	gravitational field strength = 9.8 N/kg				
	Calculate the change in gravitational potential energy of the athlete between positions ${\bf C}$ and ${\bf D}$.				
	Use the equation:				
	change in gravitational potential energy = mass × gravitational field strength × change in height [2 marks]				
	Change in gravitational potential energy =J				

0 2.4	The kinetic energy of the athlete at position D is 1600 J.					
	mass of athlete = 50 kg					
	Calculate the speed of the a	athlete at position D .				
	Use the equation:					
		speed = $\sqrt{\frac{2 \times \text{kinetic energy}}{\text{mass}}}$				
	Choose the unit from the bo	»X.		[3 marks]		
	m/s	J/kg	J/s			
		Speed =	Unit			

Figure 5 is repeated below.

0 2 . 5	At positions A and E , the athlete is standing still.	
	Why does the athlete have less energy in position E than in position A ?	[1 mark]
	Tick (✓) one box.	[1 mark]
	Energy has been transferred from the athlete to the air.	
	The air temperature has decreased.	
	The height of the athlete above the water has increased.	

solvedpapers.co.uk Athletes have a large power output when they are far-leaping. 2 What is meant by the power of an athlete? [1 mark] Tick (\checkmark) one box. The rate at which the athlete transfers energy. The size of the maximum force exerted by the athlete. The total energy transferred by the athlete. A second athlete crossed the same river by far-leaping. 0 2 The second athlete had less power than the first athlete when running between position A and position B. Complete the sentences. Choose answers from the box. Each answer may be used once, more than once or not at all. [2 marks] less than more than the same as Two factors that could explain why the second athlete had less power than the first athlete are: The time taken by the second athlete to run between position A and position B the first athlete.

The work done by the second athlete was

the first athlete.

- **2.** June/2021/Paper_1F/No.4(4.1_4.5),(4.8_4.9)
 - O 4 Solar intensity is a measure of the radiation received from the Sun at the surface of the Earth.

Figure 7 shows how the mean solar intensity changes with the distance from the equator.

Figure 7

0 4 . 1 The city of Athens is 4200 km from the equator.

What is the mean solar intensity in Athens?

[1 mark]

Mean solar intensity = W/m²

Solar water heaters use radiation from the Sun to heat water.

The heated water is stored in a water tank.

Figure 8 shows a solar water heater on the roof of a building.

Figure 8

O 4. 2 Cities closer to the equator have many more buildings with solar water heaters than cities further away from the equator.

Suggest why.

[1 mark]

0 4 . 3 The use of solar water heaters may reduce the need to burn fossil fuels.

Complete the sentence.

Choose the answer from the box.

[1 mark]

carbon dioxide	nitrogen	oxygen

Burning fossil fuels contributes to global warming because there is an increase in

the amount of _____ in the atmosphere.

0 4.4	The efficiency of the solar water heater is 0.61
	Calculate the useful power output when the total power input to the solar water heater is 1100 $\mbox{W}.$
	Use the equation:
	useful power output = efficiency × total power input [2 marks]
	Useful power output = W
0 4.5	Different solar water heaters have different sized heating panels. Suggest how the size of the heating panels affects the input power to a solar water heater. [1 mark]
0 4.8	The water tank is thermally insulated. How does thermal insulation affect the rate of energy transfer from the water in the tank? [1 mark]
	Tick (✓) one box. Thermal insulation decreases the rate of energy transfer.
	Thermal insulation does not change the rate of energy transfer.
	Thermal insulation increases the rate of energy transfer.

0 4 . 9

Table 1 shows information about different materials.

Table 1

Material	Thermal conductivity in arbitrary units
Α	3
В	2
С	8
D	4

Which material in Table 1 is the best thermal insulator?				[1 mark]				
Tick (✓) one box.			[· man,]					
Α		В		С		D		

3.	June/2021/Paper_1F/No.5(5.3_5.4)							
	0 5.3	Write down the equation which links energy (E), power (P) and time (t).	[1 mark]					
	0 5.4	The battery was fully charged when it was put into the mobile phone.						
		The battery discharged when the mobile phone was switched on.						
		The average power output of the battery as it discharged was 0.46 watts.						
		The time taken to fully discharge the battery was 2500 minutes.						
		Calculate the energy transferred by the battery.	[3 marks]					
		Energy transferred =						

4. June/2021/Paper_1H/No.3

0 3

Figure 4 shows a sailing boat crossing an ocean.

Figure 4

There is a wind turbine on the boat.

0 3. 1 The wind turbine generates electricity to charge a battery on the boat.

Name one **other** renewable energy resource that could be used on the boat to generate electricity.

[1 mark]

0 3 . 2 The boat also has a generator that burns a fossil fuel.

The battery can be charged by either the wind turbine **or** the generator.

Give two reasons why this is useful.

[2 marks]

2_____

0 3.3	Explain one environmental impact of us	ing fossil fuels to generate electricity	/. [2 marks]
0 3.4	The kinetic energy of the boat is 81 kJ.		
	mass of boat = 8000 kg		
	Calculate the speed of the boat.		[4 marks]
			[4 marks]
		Speed =	m/s

0 3 . 5	As the boat passes over a wave, the gravitational potential energy of the boat increases by 19 600 J.				
	mass of boat = 8000 kg				
	gravitational field strength = 9.8 N/kg				
	Calculate the change in height of the centre of mass of the boat as it passes over the wave.				
	[3 marks]				
	Change in height =m				