#### **AQA - Electricity - GCSE Physics**

- 1. June/2021/Paper\_1F/No.2
  - **Tigure 2** shows part of the National Grid linking a power station to consumers.

Figure 2



0 2 . 1 Name the parts of Figure 2 labelled A and B.

[2 marks]

А

В

0 2 . 2 Electricity is transmitted through A at a very high potential difference.

What is the advantage of transmitting electricity at a very high potential difference?

[1 mark]

Tick (✓) one box.

A high potential difference is safer for consumers.

Less thermal energy is transferred to the surroundings.

Power transmission is faster.

| 0 2 . 3 | The power station generates electricity at a potential difference of 25 000 $\rm V.$ |
|---------|--------------------------------------------------------------------------------------|
|         | The energy transferred by the power station in one second is 500 000 000 J.          |
|         | Calculate the charge flow from the power station in one second.                      |
|         | Use the equation:                                                                    |
|         | charge flow = $\frac{\text{energy}}{\text{potential difference}}$ [2 marks]          |
|         |                                                                                      |
|         | Charge flow in one second =C                                                         |

The electricity supply to a house has a potential difference of 230 V.

Table 1 shows the current in some appliances in the house.

Table 1

| Appliance  | Current in amps |
|------------|-----------------|
| Dishwasher | 6.50            |
| DVD player | 0.10            |
| Lamp       | 0.40            |
| TV         | 0.20            |

| 0 2 . 4 | Calculate the total power of all the appliances in <b>Table 1</b> . |           |
|---------|---------------------------------------------------------------------|-----------|
|         | Use the equation:                                                   |           |
|         | power = potential difference × current                              | [3 marks] |
|         |                                                                     |           |
|         |                                                                     |           |
|         |                                                                     |           |
|         | Total nower =                                                       | \٨/       |

| 0 2 . 5 | Each appliance in <b>Table 1</b> is switched on for 2 hours.                                           |
|---------|--------------------------------------------------------------------------------------------------------|
|         | Which appliance will transfer the most energy?                                                         |
|         | Give a reason for your answer.  [2 marks]                                                              |
|         | Appliance                                                                                              |
|         | Reason                                                                                                 |
|         |                                                                                                        |
|         |                                                                                                        |
| 0 2.6   | The average energy transferred from the National Grid every second for each person in the UK is 600 J. |
|         | There are 32 000 000 seconds in one year.                                                              |
|         | Calculate the average energy transferred each year from the National Grid for each person in the UK.   |
|         | [2 marks]                                                                                              |
|         |                                                                                                        |
|         | Average energy transferred = J                                                                         |

## 2. June/2021/Paper\_1F/No.4

A student investigated how the current in a circuit varied with the number of lamps connected in parallel in the circuit.

Figure 4 shows the circuit with three identical lamps connected in parallel.



Figure 5 shows the results.

Figure 5



| 0 4.1 | Complete the | e sentences.                        |                            |                      |           |
|-------|--------------|-------------------------------------|----------------------------|----------------------|-----------|
|       | Choose ansv  | vers from the box                   | ζ.                         |                      |           |
|       | Each answer  | can be used one                     | ce, more than once or n    | ot at all.           |           |
|       |              | decreased                           | stayed the same            | increased            |           |
|       |              |                                     |                            |                      | [3 marks] |
|       | As the numb  | er of lamps incre                   | ased, the current          |                      |           |
|       | As the numb  | er of lamps incre                   | ased, the total resistanc  | e of the             |           |
|       | circuit      |                                     | ·                          |                      |           |
|       |              |                                     | ased, the potential differ | rence across the     |           |
| 0 4.2 |              | were three lamps<br>5 A and 0.36 A. | in the circuit the amme    | ter reading kept cha | nging     |
|       | What type of | error would this                    | lead to?                   |                      | [1 mark]  |
|       | Tick (✓) one | box.                                |                            |                      | [1 mark]  |
|       | Random erro  | or                                  |                            |                      |           |
|       | Systematic e | error                               |                            |                      |           |
|       | Zero error   |                                     |                            |                      |           |

Figure 6 shows a circuit with five ammeters and three identical lamps.

Figure 6



0 4 . 3 Complete **Table 2** to show the readings on ammeters A<sub>2</sub> and A<sub>5</sub>.

[2 marks]

Table 2

| Ammeter         | <b>A</b> <sub>1</sub> | A <sub>2</sub> | <b>A</b> <sub>3</sub> | <b>A</b> <sub>4</sub> | <b>A</b> <sub>5</sub> |
|-----------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|
| Current in amps | 0.36                  |                | 0.12                  | 0.12                  |                       |

| 0 4 . 4 | The resistance of one lamp is 15 $\Omega$ . |           |
|---------|---------------------------------------------|-----------|
|         | The current in the lamp is 0.12 A.          |           |
|         | Calculate the power output of the lamp.     |           |
|         | Use the equation:                           |           |
|         | power = (current) <sup>2</sup> × resistance | [2 marks] |
|         |                                             |           |
|         | Power =                                     | W         |

## **3.** June/2021/Paper\_1F/No.9

0 9

Figure 13 shows an electric car being recharged.



Charging station

0 9 . 1 The charging station applies a direct potential difference across the battery of the car.

What does 'direct potential difference' mean?

[1 mark]

|         | solveupapers.co                                         | .ur                                     |           |
|---------|---------------------------------------------------------|-----------------------------------------|-----------|
| 0 9. 2  | Which equation links energy transferr                   | ed $(E)$ , power $(P)$ and time $(t)$ ? | [1 mark]  |
|         | Tick (✓) one box.                                       |                                         |           |
|         | energy transferred = $\frac{power}{time}$               |                                         |           |
|         | energy transferred = $\frac{\text{time}}{\text{power}}$ |                                         |           |
|         | energy transferred = power × time                       |                                         |           |
|         | energy transferred = power <sup>2</sup> × time          |                                         |           |
|         |                                                         |                                         |           |
| 0 9 . 3 | The battery in the electric car can sto                 | re 162 000 000 J of energy.             |           |
|         | The charging station has a power out                    | put of 7200 W.                          |           |
|         | Calculate the time taken to fully recha                 | arge the battery from zero.             | [3 marks] |
|         |                                                         |                                         |           |
|         |                                                         |                                         |           |
|         |                                                         |                                         |           |
|         |                                                         |                                         |           |

Time taken = s

|         | solvedpapers.co.uk                                                                             |          |
|---------|------------------------------------------------------------------------------------------------|----------|
| 0 9.4   | Which equation links current ( $I$ ), potential difference ( $V$ ) and resistance ( $R$ )?     | [1 mark  |
|         | Tick (✓) one box.                                                                              | •        |
|         | $I = V \times R$                                                                               |          |
|         | $I = V^2 \times R$                                                                             |          |
|         | $R = I \times V$                                                                               |          |
|         | $V = I \times R$                                                                               |          |
|         |                                                                                                |          |
|         |                                                                                                |          |
| 0 9 . 5 | The potential difference across the battery is 480 V.                                          |          |
|         | There is a current of 15 A in the circuit connecting the battery to the motor of electric car. | the      |
|         | Calculate the resistance of the motor.                                                         | [3 marks |

Resistance =  $\Omega$ 

| 9 . 6 | Different charging systems use different electrical currents.                                                                                                                       |                |            |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|
|       | <ul> <li>Charging system A has a current of 13 A.</li> <li>Charging system B has a current of 26 A.</li> <li>The potential difference of both charging systems is 230 V.</li> </ul> |                |            |
|       | How does the time taken to recharge a battery using charging system the time taken using charging system <b>B</b> ? Tick $(\checkmark)$ one box.                                    | n <b>A</b> con | npare with |
|       | Time taken using system <b>A</b> is half the time of system <b>B</b>                                                                                                                |                |            |
|       | Time taken using system <b>A</b> is the same as system <b>B</b>                                                                                                                     |                |            |
|       | Time taken using system <b>A</b> is double the time of system <b>B</b>                                                                                                              |                |            |

#### **4.** June/2021/Paper\_1F/No.11

1 1 Student A investigated how the current in resistor R at constant temperature varied with the potential difference across the resistor.

Student A recorded both positive and negative values of current.

Figure 14 shows the circuit Student A used.

Figure 14



| 1.1 | Describe a method that Student A could use for this investigation. | [6 marks] |
|-----|--------------------------------------------------------------------|-----------|
|     |                                                                    |           |
|     |                                                                    |           |
|     |                                                                    |           |
|     |                                                                    |           |
|     |                                                                    |           |

|         | solvedpapers.co.uk                                                                                          |           |
|---------|-------------------------------------------------------------------------------------------------------------|-----------|
|         |                                                                                                             |           |
|         |                                                                                                             |           |
|         |                                                                                                             |           |
|         |                                                                                                             |           |
|         |                                                                                                             |           |
|         |                                                                                                             |           |
|         |                                                                                                             |           |
|         |                                                                                                             |           |
|         | Chadeat B assessed the investigation                                                                        |           |
| 1 1 . 2 | Student <b>B</b> repeated the investigation.                                                                |           |
|         | During Student <b>B</b> 's investigation the temperature of resistor <b>R</b> increased.                    |           |
|         | Explain how the increased temperature of resistor <b>R</b> would have affected Student <b>B</b> 's results. |           |
|         |                                                                                                             | [2 marks] |
|         |                                                                                                             |           |
|         |                                                                                                             |           |
|         |                                                                                                             |           |
|         |                                                                                                             |           |

Figure 15 shows the scale on a moving coil ammeter at one time in the investigation.

Figure 15



|  | 1 | 1 |  | 3 | What is the resolution of the moving coil ammeter? |
|--|---|---|--|---|----------------------------------------------------|
|--|---|---|--|---|----------------------------------------------------|

[1 mark]

Resolution = A

1 1.4 Student **B** replaced the moving coil ammeter with a digital ammeter.

Figure 16 shows the reading on the digital ammeter.

Figure 16



The digital ammeter has a higher resolution than the moving coil ammeter.

Give **one** other reason why it would have been better to use the digital ammeter throughout this investigation.

[1 mark]

## **5.** June/2021/Paper\_1H/No.1

0 1

Figure 1 shows an electric car being recharged.



Charging station

0 1. 1 The charging station applies a direct potential difference across the battery of the car.

What does 'direct potential difference' mean?

[1 mark]

| 0 1 . 2 | Which equation links energy transferred $(E)$ , power $(P)$ and time $(t)$ ? | [1 mark]  |
|---------|------------------------------------------------------------------------------|-----------|
|         | Tick (✓) one box.                                                            |           |
|         | energy transferred = $\frac{\text{power}}{\text{time}}$                      |           |
|         | energy transferred = $\frac{\text{time}}{\text{power}}$                      |           |
|         | energy transferred = power × time                                            |           |
|         | energy transferred = power <sup>2</sup> × time                               |           |
|         |                                                                              |           |
| 0 1.3   | The battery in the electric car can store 162 000 000 J of energy.           |           |
|         | The charging station has a power output of 7200 W.                           |           |
|         | Calculate the time taken to fully recharge the battery from zero.            | [3 marks] |
|         |                                                                              |           |
|         |                                                                              |           |
|         |                                                                              |           |
|         |                                                                              |           |

Time taken = \_\_\_\_s

| 0 1.4 | Which equation links current $(I)$ , potential difference $(V)$ and resistance $(R)$ ?         | [1 mark] |
|-------|------------------------------------------------------------------------------------------------|----------|
|       | Tick (✓) one box.                                                                              |          |
|       | $I = V \times R$                                                                               |          |
|       | $I = V^2 \times R$                                                                             |          |
|       | $R = I \times V$                                                                               |          |
|       | $V = I \times R$                                                                               |          |
|       |                                                                                                |          |
| 0 1.5 | The potential difference across the battery is 480 V.                                          |          |
|       | There is a current of 15 A in the circuit connecting the battery to the motor of electric car. | the      |
|       | Calculate the resistance of the motor.                                                         | 3 marks] |
|       |                                                                                                |          |
|       |                                                                                                |          |
|       |                                                                                                |          |
|       |                                                                                                |          |

Resistance =

| 0 1.6 | Different charging systems use different electrical currents.                                                                                                                       |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | <ul> <li>Charging system A has a current of 13 A.</li> <li>Charging system B has a current of 26 A.</li> <li>The potential difference of both charging systems is 230 V.</li> </ul> |
|       | How does the time taken to recharge a battery using charging system A compare with the time taken using charging system B?  [1 mark]  Tick (✓) one box.                             |
|       | Time taken using system <b>A</b> is half the time of system <b>B</b>                                                                                                                |
|       | Time taken using system A is the same as system B                                                                                                                                   |
|       | Time taken using system <b>A</b> is double the time of system <b>B</b>                                                                                                              |

#### **6.** June/2021/Paper\_1H/No.3

0 3 Student A investigated how the current in resistor R at constant temperature varied with the potential difference across the resistor.

Student A recorded both positive and negative values of current.

Figure 2 shows the circuit Student A used.

Figure 2



| 0   3  . 1 | Describe a method that Student <b>A</b> could use for this investigation. | [6 marks] |
|------------|---------------------------------------------------------------------------|-----------|
|            |                                                                           |           |
|            |                                                                           |           |
|            |                                                                           |           |
|            |                                                                           |           |
|            |                                                                           |           |
|            |                                                                           |           |

|         | solvedpapers.co.uk                                                                       |           |
|---------|------------------------------------------------------------------------------------------|-----------|
|         |                                                                                          |           |
|         |                                                                                          |           |
|         |                                                                                          |           |
|         |                                                                                          |           |
|         |                                                                                          |           |
|         |                                                                                          |           |
|         |                                                                                          |           |
| 0 3 . 2 | Student <b>B</b> repeated the investigation.                                             |           |
|         | During Student <b>B</b> 's investigation the temperature of resistor <b>R</b> increased. |           |
|         | Explain how the increased temperature of resistor <b>R</b> would have affected           |           |
|         | Student B's results.                                                                     | [2 marks] |
|         |                                                                                          |           |
|         |                                                                                          |           |
|         |                                                                                          |           |
|         |                                                                                          |           |

Figure 3 shows the scale on a moving coil ammeter at one time in the investigation.

Figure 3



[1 mark]

Resolution = A

0 3 . 4 Student **B** replaced the moving coil ammeter with a digital ammeter.

Figure 4 shows the reading on the digital ammeter.

Figure 4



The digital ammeter has a higher resolution than the moving coil ammeter.

Give **one** other reason why it would have been better to use the digital ammeter throughout this investigation.

[1 mark]

## **7.** June/2021/Paper\_1H/No.7

0 7

A student investigated how the current in a series circuit varied with the resistance of a variable resistor.

Figure 8 shows the circuit used.



Figure 9 shows the results.



| 0 7 . 1 | The battery had a power output of 230 mW when the resistance of the variable resistor was 36 $\Omega$ . |     |  |
|---------|---------------------------------------------------------------------------------------------------------|-----|--|
|         | Determine the potential difference across the battery.  [4 marks]                                       | ks] |  |
|         |                                                                                                         |     |  |
|         |                                                                                                         |     |  |
|         | Potential difference =                                                                                  |     |  |
| 0 7.2   | The student concluded:                                                                                  |     |  |
|         | 'the current in the circuit was inversely proportional to the resistance of the variable resistor.'     |     |  |
|         | Explain how <b>Figure 9</b> shows that the student is correct. [2 marks                                 | ks] |  |
|         |                                                                                                         |     |  |
|         |                                                                                                         |     |  |
|         |                                                                                                         |     |  |

0 7 . 3 Figure 10 shows a circuit with a switch connected incorrectly.





| Explain how closing the switch would affect the current in the variable | e resistor.<br>[2 marks] |
|-------------------------------------------------------------------------|--------------------------|
|                                                                         |                          |
|                                                                         |                          |
|                                                                         |                          |
|                                                                         |                          |
|                                                                         |                          |

- **8.** June/2021/Paper\_1H/No.10
  - 1 0 Figure 13 shows some overhead power cables in the National Grid.

Figure 13



Explain the advantage of transmitting electricity at a very high potential difference.

[3 marks]

1 0 . 2 It is dangerous for a person to fly a kite near an overhead power cable.

Figure 14 shows a person flying a kite.

Figure 14



The person could receive a fatal electric shock if the kite was very close to, but not touching the power cable.

| Explain why. | [3 marks] |
|--------------|-----------|
|              |           |
|              |           |
|              |           |
|              |           |
|              |           |
|              |           |

A scientist investigated how the potential difference needed for air to conduct charge varies with the distance between a cable and earth.

Figure 15 shows the results.



The data in **Figure 15** gives the relationship between potential difference and distance when the air is dry.

When the humidity of air increases the air becomes a better conductor of electricity.

Draw a line on **Figure 15** to show how the potential difference changes with distance if the humidity of the air increases.

[2 marks]

Figure 16 shows a cross-section through a power cable.

Figure 16



A 1 metre length of a single aluminium wire is a better conductor than a 1 metre length of the steel wire.

The individual wires behave as if they are resistors connected in parallel.

| aluminium wire. | ,         |  |
|-----------------|-----------|--|
|                 | [2 marks] |  |
|                 |           |  |
|                 |           |  |
|                 |           |  |
|                 |           |  |
|                 |           |  |
|                 |           |  |