AQA - Atomic structure - GCSE Physics

1.

June/2021/Pap	er_1F/No.5		
0 5	Atoms of different eleme	ents have different properties.	
0 5.1	Which of the following is	s the same for all atoms of the same element?	[1 mark]
	Tick (✓) one box.		-
	Atomic number		
	Mass number		
	Neutron number		
0 5.2	Which of the following is Tick (✓) one box.	s different for isotopes of the same element?	[1 mark]
	Number of electrons		
	Number of neutrons		
	Number of protons		

0 5 . 3 A nucleus emits radiation.

Figure 7 shows how the mass number and the atomic number change.

The nucleus is labelled **D**.

Figure 7

Which type of radiation is emitted when nucleus **D** decays?

[1 mark]

Tick (✓) one box.

Alpha

Beta

Neutron

0 5 . 4 Nucleus **E** also emits radiation.

Figure 8 shows how the mass number and the atomic number change for nucleus **E**.

Figure 8

Which type of radiation is emitted when nucleus E decays?

[1 mark]

Tick (\checkmark) one box.

Alpha

Beta

Neutron

Beta radiation can be used to monitor the thickness of paper during production.

Figure 9 shows how the radiation is used.

Figure 9

The computer uses information from the radiation detector to change the size of the gap between the rollers.

0 5 . 5 Complete the sentences.

Choose answers from the box.

Each answer can be used once, more than once or not at all.

decrease stay the same increase

The thickness of the paper between the beta source and the detector increases.

[2 marks]

The reading on the detector will ______.

This is because the amount of radiation absorbed by the paper

will .

solvedpapers.co.uk

0 5 . 6	All radioactive elements have a half-life.		
	What is meant by 'half-life'?		[1 mark]
	Tick (✓) one box.		[Timurk]
	The time it takes for all the nuclei in a radioactive sample	to split in half.	
	The time it takes for the count rate of a radioactive sample	le to halve.	
	The time it takes for the radiation to travel half of its range	e in air.	
0 5.7	Why should the radiation source used in Figure 9 have a Tick (\checkmark) one box.	ı long half-life?	[1 mark]
	So the activity of the source is approximately constant.		
	So the amount of radiation decreases quickly.		
	So the radiation has a long range in air.		

June/2021/Pap	per_1F/No.10	
1 0	Energy from the Sun is released by nuclear fusion.	
1 0 . 1	Complete the sentences.	
		[2 marks]
	Nuclear fusion is the joining together of	
	During nuclear fusion the total mass of the particles	
1 0 . 2	Nuclear fusion of deuterium is difficult to achieve on Earth because of the hig temperature needed.	ıh
	Electricity is used to increase the temperature of 4.0 g of deuterium by 50 00	0 000 °C.
	specific heat capacity of deuterium = 5200 J/kg °C	
	Calculate the energy needed to increase the temperature of the deuterium by 50 000 000 $^{\circ}$ C.	
	Use the Physics Equations Sheet.	
		[3 marks]

Energy =

solvedpapers.co.uk

1 0 . 3	The idea of obtaining power from nuclear fusion was investigated using models.			
	The models were tested before starting to build the first commercial nuclear fusion power station.			
	Suggest two reasons why models were tested. [2 mag.	arks]		
	1			
	2			
1 0 . 4	Generating electricity using nuclear fusion will have fewer environmental effects the generating electricity using fossil fuels.	nan		
	Explain one environmental effect of generating electricity using fossil fuels. [2 mag)	arks]		

- **3.** June/2021/Paper_1H/No.6
 - 0 6 Figure 6 shows the mass number and the atomic number for the nuclei of five different atoms.

Figure 6

0 6. 1 How many neutrons are there in a nucleus of atom A?

[1 mark]

solvedpapers.co.uk

0 6 . 2	Which two ato	oms in Figure 6 are the same element?	[1 mark]
	Tick (✓) one b	oox.	[1 many
	A and B		
	A and C		
	C and D		
	D and E		

0 6 . 3 Nucleus B decays by emitting an alpha particle.

Draw an arrow on Figure 7 to represent the alpha decay.

[2 marks]

What is meant by the 'random nature of radioactive decay'?

[1 mark]

0 6 . 5

A polonium (Po) nucleus decays by emitting an alpha particle and forming a lead (Pb) nucleus.

$$Po \rightarrow Pb + \alpha$$

The lead (Pb) nucleus then decays by emitting a beta particle and forms a bismuth (Bi) nucleus.

$$Pb \to Bi + \beta$$

The bismuth (Bi) nucleus then decays by emitting a beta particle and forms a polonium (Po) nucleus.

$$Bi \to Po + \beta$$

Explain now these three decays result in a nucleus of the original element, polonium. [3 marks]