AQA – Statistical distributions – A2 Mathematics P3

1. June/2021/Paper_7357/3/No.11

The random variable X is such that $X \sim \mathsf{B}(n,\,p)$

The mean value of X is 225

The variance of X is 144

Find p.

Circle your answer.

[1 mark]

2. June/2021/Paper_7357/3/No.16

The discrete random variable X has the probability function

$$P(X = x) = \begin{cases} c(7 - 2x) & x = 0, 1, 2, 3 \\ k & x = 4 \\ 0 & \text{otherwise} \end{cases}$$

where c and k are constants.

(a) Show that 16c + k = 1

[2 marks]

(b) Given that $P(X \ge 3) = \frac{5}{8}$

find the value of c and the value of k.

[2 marks]

solvedpapers.co.uk

^		1000415		10 10 .	
3.	June	/2021/Paper	7357/	'3/Nc	0.17

James is playing a mathematical game on his computer.

The probability that he wins is 0.6

As part of an online tournament, James plays the game 10 times.

Let *Y* be the number of games that James wins.

(a) State two assumptions, in context, for Y to be modelled as B(10, 0.6)

[2 marks]

(b) Find P(Y = 4)

[1 mark]

(c) Find $P(Y \ge 4)$

[2 marks]

solvedpapers.co.uk

(d) After practising the game, James claims that he has increased his probability of winning the game.

In a random sample of 15 subsequent games, he wins 12 of them.

Test a 5% significance level whether James's claim is correct.

[6 marks]

solvedpapers.co.uk

4. June/2021/Paper_7357/3/No.18

A factory produces jars of jam and jars of marmalade.

- (a) The weight, X grams, of jam in a jar can be modelled as a normal variable with mean 372 and a standard deviation of 3.5
- (a) (i) Find the probability that the weight of jam in a jar is equal to 372 grams.

[1 mark]

(a) (ii) Find the probability that the weight of jam in a jar is greater than 368 grams.

[2 marks]

- (b) The weight, Y grams, of marmalade in a jar can be modelled as a normal variable with mean μ and standard deviation σ
- **(b) (i)** Given that P(Y < 346) = 0.975, show that

$$346 - \mu = 1.96\sigma$$

Fully justify your answer.

[3 marks]

(b) (ii) Given further that

$$P(Y < 336) = 0.14$$

find μ and σ

[4 marks]