AQA - Kinematics - A2 Mathematics P2

1. June/2021/Paper_7357/2/No.11

A particle's displacement, r metres, with respect to time, t seconds, is defined by the equation

$$r = 3e^{0.5t}$$

Find an expression for the velocity, $v \, \text{m} \, \text{s}^{-1}$, of the particle at time t seconds.

Circle your answer.

[1 mark]

$$v = 1.5e^{0.5t}$$

$$v = 6e^{0.5t}$$

$$v = 1.5te^{0.5t}$$

$$v = 6te^{0.5t}$$

June/2021/Paper_7357/2/No.12

A particle has a speed of $6 \,\mathrm{m}\,\mathrm{s}^{-1}$ in a direction relative to unit vectors i and j as shown in the diagram below.

The velocity of this particle can be expressed as a vector $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ m s⁻¹

Find the correct expression for v_2

Circle your answer.

[1 mark]

$$v_2 = 6 \cos 30^\circ$$

$$v_2 = 6 \sin 30^{\circ}$$

$$v_2 = 6\cos 30^\circ$$
 $v_2 = 6\sin 30^\circ$ $v_2 = -6\sin 30^\circ$ $v_2 = -6\cos 30^\circ$

3. June/2021/Paper_7357/2/No.14

A motorised scooter is travelling along a straight path with velocity $v \, \text{m s}^{-1}$ over time t seconds as shown by the following graph.

Noosha says that, in the period $12 \le t \le 36$, the scooter travels approximately 130 metres.

Determine if Noosha is correct, showing clearly any calculations you have used.

[4 marks]

4. June/2021/Paper_7357/2/No.1	4.	June/2021/Pape	er 7357/2/No.17
---------------------------------------	----	----------------	-----------------

A ball is released from a great height so that it falls vertically downwards towards the surface of the Earth.

(a) Using a simple model, Andy predicts that the velocity of the ball, exactly 2 seconds after being released from rest, is $2g \, \text{m s}^{-1}$

Show how Andy has obtained his prediction.

[2 marks]

(b) Using a refined model, Amy predicts that the ball's acceleration, $a \,\mathrm{m}\,\mathrm{s}^{-2}$, at time t seconds after being released from rest is

$$a = g - 0.1v$$

where $v \, \text{m} \, \text{s}^{-1}$ is the velocity of the ball at time t seconds.

Find an expression for v in terms of t.

[7 marks]

(c) Comment on the value of v for the two models as t becomes large.

[2 marks]

5.	June	/2021	/Paper	7357	/2/No.18

Two particles, P and Q, are projected at the same time from a fixed point X, on the ground, so that they travel in the same vertical plane.

P is projected at an acute angle θ° to the horizontal, with speed $u \, \text{m s}^{-1}$

Q is projected at an acute angle $2\theta^{\circ}$ to the horizontal, with speed $2u \,\mathrm{m}\,\mathrm{s}^{-1}$

Both particles land back on the ground at exactly the same point, Y.

Resistance forces to motion may be ignored.

(a) Show that

$$\cos 2\theta = \frac{1}{8}$$

[6 marks]

(b) P takes a total of 0.4 seconds to travel from X to Y.

Find the time taken by Q to travel from X to Y.

[4 marks]

(c) State one modelling assumption you have chosen to make in this question.

[1 mark]

solvedpapers.co.uk

			1-			
6.	June,	/2021	/Paper	7357	/2,	/No.19

Two skaters, Jo and Amba, are separately skating across a smooth, horizontal surface of ice.

Both are moving in the same direction, so that their paths are straight and are parallel to each other.

Jo is moving with constant velocity $(2.8i + 9.6j) \,\mathrm{m\,s^{-1}}$

At time t=0 seconds Amba is at position $(2\mathbf{i}-7\mathbf{j})$ metres and is moving with a constant speed of $8\,\mathrm{m\,s^{-1}}$

(a) (i) Explain why Amba's velocity must be in the form $k(2.8i + 9.6j) \,\mathrm{m\,s^{-1}}$, where k is a constant.

[1 mark]

(a) (ii) Verify that k = 0.8

[1 mark]

(b) Find the position vector of Amba when t = 4

[3 marks]

solvedpapers.co.uk

(c) At **both** t = 0 and t = 4 there is a distance of 5 metres between Jo and Amba's positions.

Determine the shortest distance between their two parallel lines of motion.

Fully justify your answer.

[5 marks]