AQA – Forces and Newton's laws – AS Mathematics P1

1. June/2021/Paper_7356/1/No.10

Two forces $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ N and $\begin{bmatrix} -7 \\ -5 \end{bmatrix}$ N act on a particle.

Find the resultant force.

Circle your answer.

[1 mark]

$$\begin{bmatrix} -21 \\ 10 \end{bmatrix}$$
 N

$$\begin{bmatrix} -21 \\ 10 \end{bmatrix} N \qquad \begin{bmatrix} -4 \\ -7 \end{bmatrix} N \qquad \begin{bmatrix} 4 \\ 3 \end{bmatrix} N \qquad \begin{bmatrix} 10 \\ 7 \end{bmatrix} N$$

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix}$$
N

$$\begin{bmatrix} 10 \\ 7 \end{bmatrix}$$
 N

solvedpapers.co.uk

2.

June/2021/Paper_7356/1/No.11			
	Jackie says:		
	"A person's weight on Earth is directly	proportional to their mass."	
	Tom says:		
	"A person's weight on Earth is different	to their weight on the moon."	
	Only one of the statements below is correct.		
	Identify the correct statement.		
	Tick (✓) one box.	[4 magula]	
		[1 mark]	
	Jackie and Tom are both wrong.		
	Jackie is right but Tom is wrong.		
	Jackie is wrong but Tom is right.		
	Jackie and Tom are both right.		

3. June/2021/Paper_7356/1/No.12

A particle P lies at rest on a smooth horizontal table.

A constant resultant force, **F** newtons, is then applied to P.

As a result P moves in a straight line with constant acceleration $\begin{bmatrix} 8 \\ 6 \end{bmatrix}$ m s⁻²

(a) Show that the magnitude of the acceleration of P is $10 \,\mathrm{m\,s^{-2}}$

[1 mark]

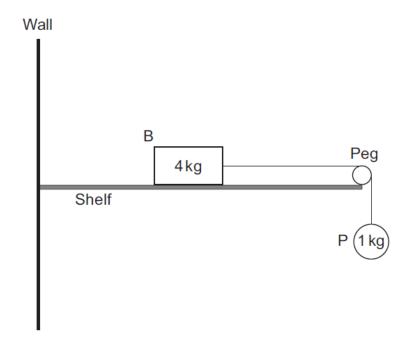
(b) Find the speed of P after 3 seconds.

[1 mark]

(c) Given that $\mathbf{F} = \begin{bmatrix} 2 \\ 1.5 \end{bmatrix} N$, find the mass of P.

[2 marks]

4. June/2021/Paper_7356/1/No.15


In this question, use $g = 10 \,\mathrm{m\,s^{-2}}$

A box, B, of mass 4 kg lies at rest on a fixed rough horizontal shelf.

One end of a light string is connected to B.

The string passes over a smooth peg, attached to the end of the shelf.

The other end of the string is connected to particle, P, of mass 1 kg, which hangs freely below the shelf as shown in the diagram below.

B is initially held at rest with the string taut.

B is then released.

B and P both move with constant acceleration $a \,\mathrm{m\,s^{-2}}$

As B moves across the shelf it experiences a total resistance force of 5 N

(a) State one type of force that would be included in the total resistance force.

[1 mark]

	solvedpapers.co.uk	
(b)	Show that $a = 1$	[4 marks]
(c)	When B has moved forward exactly 20 cm the string breaks.	
	Find how much further B travels before coming to rest.	[4 marks]
(d)	State one assumption you have made when finding your solutions in parts	(b) or (c). [1 mark]