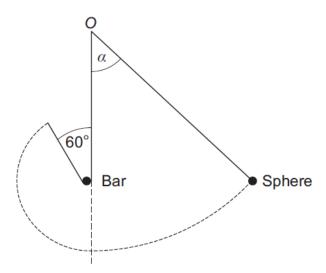
AQA - Circular motion - A2 Further Mathematics Mechanics

1. June/2021/Paper_7367/3M/No.7

A light string has length 1.5 metres.

A small sphere is attached to one end of the string.

The other end of the string is attached to a fixed point O


A thin horizontal bar is positioned 0.9 metres directly below O

The bar is perpendicular to the plane in which the sphere moves.

The sphere is released from rest with the string taut and at an angle α to the downward vertical through ${\it O}$

The string becomes slack when the angle between the two sections of the string is 60°

Ben draws the diagram below to show the initial position of the sphere, the bar and the path of the sphere.

(a)	State two reasons why Ben's diagram is not a good representation of the	situation.
		[2 marks]

Reason 1_____

Reason 2______

(b) Using your answer to part (a), sketch an improved diagram.

[1 mark]

(c) Find α , giving your answer to the nearest degree.

[6 marks]

The angle between the elastic string and the vertical is α

2. June/2021/Page 1	per_7367/3M/No.9
---------------------	------------------

In this question use $g = 9.81 \,\mathrm{m \, s^{-2}}$

A conical pendulum is made from an elastic string and a sphere of mass $0.2\,\mathrm{kg}$ The string has natural length 1.6 metres and modulus of elasticity $200\,\mathrm{N}$ The sphere describes a horizontal circle of radius 0.5 metres at a speed of $v\,\mathrm{m\,s^{-1}}$

(a) Show that

$$62.5 - 200 \sin \alpha = 1.962 \tan \alpha$$

[5 marks]

(b) Use your calculator to find α

[1 mark]

(c) Find the value of v

[4 marks]