AQA – Sequence and series – A2 Mathematics P1

1. June/2020/Paper_1/No.1

The first three terms, in ascending powers of *x*, of the binomial expansion of $(9+2x)^{\frac{1}{2}}$ are given by

$$(9+2x)^{\frac{1}{2}} \approx a + \frac{x}{3} - \frac{x^2}{54}$$

where a is a constant.

(a) State the range of values of *x* for which this expansion is valid.

Circle your answer.

$$|x| < \frac{2}{9}$$
 $|x| < \frac{2}{3}$ $|x| < 1$ $|x| < \frac{9}{2}$

[1 mark]

[1 mark]

(b) Find the value of *a*.

Circle your answer.

1	2	3	9

		solvedpapers.co.uk	
Jun	ne/202	0/Paper_1/No.7	
		Consecutive terms of a sequence are related by	
		$u_{n+1} = 3 - (u_n)^2$	
(a)	In the case that $u_1 = 2$	
(a) (i)	Find u ₃	[2 marks]
(a) (ii)	Find u ₅₀	[1 mark
(b)))	State a different value for u_1 which gives the same value for u_{50} as found in part (a)(ii).	
			[1 mark

		solvedpapers.co.uk	
Ju	ine/202	D/Paper_1/No.10	
(a	a)	An arithmetic series is given by	
		$\sum_{r=5}^{20} (4r+1)$	
(8	a) (i)	Write down the first term of the series.	
			[1 mark]
(8	a) (ii)	Write down the common difference of the series.	[1 mark]
(a	a) (iii)	Find the number of terms of the series.	[1 mark]

(b) A different arithmetic series is given by

$$\sum_{r=10}^{100} (br+c)$$

where b and c are constants.

The sum of this series is 7735

(b) (i) Show that 55b + c = 85

[4 marks]

	solvedpapers.co.uk
(b) (ii)	The 40th term of the series is 4 times the 2nd term.
	Find the values of b and c. [4 marks

June/201	9/Paper_1/No.5	
	An arithmetic sequence has first term <i>a</i> and common difference <i>d</i> .	
	The sum of the first 16 terms of the sequence is 260	
(a)	Show that $4a + 30d = 65$ [2 marks	s]
		-
		-
		-
		-
		-
		_
(b)	Given that the sum of the first 60 terms is 315, find the sum of the first 41 terms. [3 marks	5]
		-
		-
		-
		_
		-
		-
		-
		_
		_
		_
		_
		_
		The sum of the first 16 terms of the sequence is 260 (a) Show that $4a + 30d = 65$ [2 marks

solved	papers.co.uk	

(c) S_n is the sum of the first *n* terms of the sequence.

Explain why the value you found in part (b) is the maximum value of S_n

[2 marks]

solvedpapers.co.uk

5. June/2019/Paper_1/No.8

$$P(n) = \sum_{k=0}^{n} k^{3} - \sum_{k=0}^{n-1} k^{3}$$
 where *n* is a positive integer.