AQA – Proof – AS Further Mathematics P1

- 1. June/2020/Paper_1/No.5
 - (a) Show that

 $r^{2}(r+1)^{2} - (r-1)^{2}r^{2} = pr^{3}$

where p is an integer to be found.

[1 mark]

1

(b) Hence use the method of differences to show that

$$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$$

[3 marks]

[3 marks

n that, for all integ	$n \geq 1$, the	[4 n

solvedpapers.co.uk

3. June/2019/Paper_1/No.7

(a) Show that

$$\frac{1}{r-1} - \frac{1}{r+1} \equiv \frac{A}{r^2 - 1}$$

where A is a constant to be found.

[1 mark

(b) Hence use the method of differences to show that

$$\sum_{r=2}^{n} \frac{1}{r^2 - 1} \equiv \frac{an^2 + bn + c}{4n(n+1)}$$

where a, b and c are integers to be found.

[4 marks

solvedpapers.co.uk

4. June/2019/Paper_1/No.12

The matrix A is given by

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

(a) Prove by induction that, for all integers $n \ge 1$,

$$\mathbf{A}^n = \begin{bmatrix} 1 & 3^n - 1 \\ 0 & 3^n \end{bmatrix}$$

[4 marks]

	solvedpapers.co.uk	
(b)	Find all invariant lines under the transformation matrix A .	
	Fully justify your answer.	[6 marks
(c)	Find a line of invariant points under the transformation matrix A.	[2 marks
		1