AQA – Probability – AS Mathematics P2

1.

The emissions	in grams per kilogram were:			
	13 45 45 0 49 77	7 49 49) 49	78
E. 10		40 40	, 40	70
Find the standa	ard deviation of the sample.			[
	ntalist calculated the average CC	O ₂ emissior	ns for car	s in the Larg
	in 2002 and in 2016.			
The averages	are listed below.			
	Year of registration	2002	2016	
	Year of registration Average CO ₂ emission	2002 171.2	2016 120.4	
The environme	Average CO ₂ emission	171.2	120.4	002 and 201
The environme combined is 14	Average CO ₂ emission entalist claims that the average (171.2	120.4	002 and 201
combined is 14	Average CO ₂ emission entalist claims that the average (171.2	120.4	002 and 201
combined is 14	Average CO ₂ emission entalist claims that the average of the state o	171.2	120.4	
combined is 14 Determine whe	Average CO ₂ emission entalist claims that the average of the state o	171.2	120.4	002 and 201
combined is 14 Determine whe	Average CO ₂ emission entalist claims that the average of the state o	171.2	120.4	
combined is 14 Determine whe	Average CO ₂ emission entalist claims that the average of the state o	171.2	120.4	
combined is 14 Determine whe	Average CO ₂ emission entalist claims that the average of the state o	171.2	120.4	
combined is 14 Determine whe	Average CO ₂ emission entalist claims that the average of the state o	171.2	120.4	

2. June/2020/Paper_2/No.17

A game consists of spinning a circular wheel divided into numbered sectors as shown below.

On each spin the score, X, is the value shown in the sector that the arrow points to when the spinner stops.

The probability of the arrow pointing at a sector is proportional to the angle subtended at the centre by that sector.

(a) Show that $P(X = 1) = \frac{5}{18}$

	18			[1 mark]
 		 	 	-

(b) Complete the probability distribution for X in the table below.

x	1		
P(X = x)	5 18		

[2 marks]

2	1	12020	/Paper	2/11	40
-5	IIIne	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	vaner	/ NIC	าา×

(a) Bag A contains 7 blue discs, 4 red discs and 1 yellow disc.

Two discs are drawn at random from bag A without replacement.

Find the probability that exactly one of the discs is blue.	[2 marks

solvedpapers.co.uk

Bag A contains 7 blue discs, 4 red discs and 1 yellow disc.

(b)

Bag B contains 3 blue discs and 6 red discs.	
A disc is drawn at random from Bag A and placed in Bag B.	
A disc is then drawn at random from Bag B.	
Find the probability that the disc drawn from Bag B is red.	[3 marks

June/	2019/Paper_2/No.1 Denzel want		car with	n a prop	ulsion t	ype oth e	er than	petrol or d	iesel.
	He takes a s with one par				ta Set,	of the C	O ₂ emis	ssions, in	g/km, of cars
	The sample	is as follo	ws						
	82	13	96	49	96	92	70	81	
(a)	Using your k					state wh	nich pro	pulsion typ	e this sample
	, ,		,						[2 marks
(b)	Calculate the	e mean of	the sam	nple.					
									[1 mark
(c)	Calculate the	e standard	I deviation	on of the	sampl	e.			[1 mark

solvedpapers.co.uk

(d)	Denzel claims that the value 13 is an outlier.	
(d) (i)	Any value more than 2 standard deviations from the mean can be regarded a outlier.	as an
	Verify that Denzel's claim is correct.	[1 mark]
(d) (ii)	State what effect, if any, removing the value 13 from the sample would have standard deviation.	on the

5. June/2019/Paper_2/No.14

A probability distribution is given by

$$P(X = x) = c(4 - x)$$
, for $x = 0, 1, 2, 3$

where c is a constant.

Show that $c = \frac{1}{10}$ (a)

[2 marks]

Calculate $P(X \ge 1)$ (b)

[2 marks]

6. June	2019	/Paper_	2,	/No.15

Two independent events, A and B, are such that

$$P(A) = 0.2$$

$$P(A \cup B) = 0.8$$

	•	•
(a) (i)	Find P(B)	[4 mark
		•
(a) (ii)	Find $P(A \cap B)$	
		[1 ma

solvedpapers.co.uk

(b)	State, with a reason, whether or not the events A and B are mutually exclusive. [1 mar