AQA - Polar coordinates - A2 Further Mathematics P1

1. June/2020/Paper_1/No. 15

The diagram shows part of a spiral curve.
The point P has polar coordinates (r, θ) where $0 \leq \theta \leq \frac{\pi}{2}$
The points T and S lie on the initial line and O is the pole.
$T P Q$ is the tangent to the curve at P.

(a) Show that the gradient of $T P Q$ is equal to

$$
\frac{\frac{\mathrm{d} r}{\mathrm{~d} \theta} \sin \theta+r \cos \theta}{\frac{\mathrm{~d} r}{\mathrm{~d} \theta} \cos \theta-r \sin \theta}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The curve has polar equation

$$
r=\mathrm{e}^{(\cot b) \theta}
$$

where b is a constant such that $0<b<\frac{\pi}{2}$
Use the result of part (a) to show that the angle between the line $O P$ and the tangent $T P Q$ does not depend on θ.
\qquad

