## AQA - Numerical methods - A2 Mathematics P1

- 1. June/2020/Paper\_1/No.11(b-c)
  - (b) Shape B is made from four copies of region R as shown in Figure 4 below.

Figure 4



Shape B is cut from metal of thickness 2 mm

The metal has a density of 10.5 g/cm<sup>3</sup>

Give your answer to the nearest gram.

Use the trapezium rule with  $\mathbf{six}$  ordinates to calculate an approximate value of the mass of Shape B.

[5 marks]

|          | solvedpapers.co.uk                                                                  |
|----------|-------------------------------------------------------------------------------------|
|          |                                                                                     |
|          |                                                                                     |
| (c)      | Without further calculation, give one reason why the mass found in part (b) may be: |
| (c) (i)  | an underestimate. [1 mark                                                           |
|          |                                                                                     |
|          |                                                                                     |
|          |                                                                                     |
| (c) (ii) | an overestimate.                                                                    |
| (5) ()   | [1 mark                                                                             |
|          |                                                                                     |
|          |                                                                                     |
|          |                                                                                     |

| _          |       |        |        |    |        |
|------------|-------|--------|--------|----|--------|
| 2.         | luna  | /2020  | /Paper | 1/ | /No 1/ |
| <b>Z</b> . | Julie | / 2020 | /rapei | /  | 110.14 |

The function f is defined by

$$f(x) = 3^x \sqrt{x} - 1 \qquad \text{where } x \ge 0$$

(a) f(x) = 0 has a single solution at the point  $x = \alpha$ 

| By considering a suitable change of sign, show that $\alpha$ lies between 0 and 1 $$ | [2 marks |
|--------------------------------------------------------------------------------------|----------|
|                                                                                      |          |
|                                                                                      |          |
|                                                                                      |          |
|                                                                                      |          |
|                                                                                      |          |
|                                                                                      |          |
|                                                                                      |          |

(b) (i) Show that

$$f'(x) = \frac{3^x (1 + x \ln 9)}{2\sqrt{x}}$$

[3 marks

| <br> | <br> |
|------|------|
| <br> | <br> |
| <br> | <br> |
|      |      |

## solvedpapers.co.uk

(b) (ii) Use the Newton–Raphson method with  $x_1=1$  to find  $x_3$ , an approximation for  $\alpha$ .

| Give your an     | swer to five decimal places.                          | [2 marks          |
|------------------|-------------------------------------------------------|-------------------|
|                  |                                                       |                   |
|                  |                                                       |                   |
|                  |                                                       |                   |
|                  |                                                       |                   |
|                  |                                                       |                   |
|                  |                                                       |                   |
|                  |                                                       |                   |
|                  |                                                       |                   |
| iii) Explain why | the Newton–Raphson method fails to find $\alpha$ with | $x_1 = 0$ [2 mark |
|                  |                                                       |                   |
|                  |                                                       |                   |
|                  |                                                       |                   |
|                  |                                                       |                   |
|                  |                                                       |                   |
|                  |                                                       |                   |
|                  |                                                       |                   |

- 3. June/2019/Paper\_1/No.7
  - (a) By sketching the graphs of  $y = \frac{1}{x}$  and  $y = \sec 2x$  on the axes below, show that the equation

$$\frac{1}{x} = \sec 2x$$

has exactly one solution for x > 0

[3 marks]



(b) By considering a suitable change of sign, show that the solution to the equation lies between 0.4 and 0.6

[2 marks]

| (c)     | Show that the equation can be rearranged to give                                                   |
|---------|----------------------------------------------------------------------------------------------------|
|         | $x = \frac{1}{2}\cos^{-1}x$                                                                        |
|         | [2 marks                                                                                           |
|         |                                                                                                    |
|         |                                                                                                    |
|         |                                                                                                    |
|         |                                                                                                    |
| (d) (i) | Use the iterative formula                                                                          |
|         | $x_{n+1} = \frac{1}{2} \cos^{-1} x_n$                                                              |
|         | with $x_1=0.4$ , to find $x_2,x_3$ and $x_4,$ giving your answers to four decimal places. [2 marks |
|         |                                                                                                    |
|         |                                                                                                    |
|         |                                                                                                    |
|         |                                                                                                    |

(d) (ii) On the graph below, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of  $x_2$ ,  $x_3$  and  $x_4$ .

[2 marks]



4. June/2019/Paper\_1/No.14

The graph of  $y = \frac{2x^3}{x^2 + 1}$  is shown for  $0 \le x \le 4$ 



Caroline is attempting to approximate the shaded area, A, under the curve using the trapezium rule by splitting the area into n trapezia.

- (a) When n=4
- (a) (i) State the number of ordinates that Caroline uses.

\_\_\_\_\_

[1 mark]

\_\_\_\_\_

solvedpapers.co.uk

(a) (ii) Calculate the area that Caroline should obtain using this method.

| Give your answer correct to two decimal places. | [3 n |
|-------------------------------------------------|------|
|                                                 |      |
|                                                 |      |
|                                                 |      |

|     | solvedpapers.co.uk               |           |
|-----|----------------------------------|-----------|
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
| (b) | Show that the exact area of A is |           |
|     | 16 — In 17                       |           |
|     | Fully justify your answer.       |           |
|     |                                  | [5 marks] |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |
|     |                                  |           |

solvedpapers.co.uk

| (c) | Explain what would happen to Caroline's answer to part (a)(ii) as $n \to \infty$ | [1 mark] |
|-----|----------------------------------------------------------------------------------|----------|
|     |                                                                                  |          |