<u>AQA – Matrices – AS Further Mathematics P1</u>

1. June/2020/Paper_1/No.4

The matrices A and B are such that

$$\mathbf{A} = \begin{bmatrix} 2 & a & 3 \\ 0 & -2 & 1 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} 1 & -3 \\ -2 & 4a \\ 0 & 5 \end{bmatrix}$$

(a) Find the product **AB** in terms of *a*.

Find the determinant of AB in terms of <i>a</i> .	
	[1

solvedpapers.co.uk			
(c)	Show that AB is singular when $a = -1$	[2 marks]	

	solvedpapers.co.uk			
2.	June/202	C/Paper_1/No.9 The quadratic equation $2x^2 + px + 3 = 0$ has two roots, α and β , where $\alpha > \beta$.		
	(a) (i)	Write down the value of αβ. [1 mark]		
	(a) (ii)	Express $\alpha + \beta$ in terms of p . [1 mark]		
	(b)	Hence find $(\alpha - \beta)^2$ in terms of <i>p</i> . [2 marks]		

3. June/2020/Paper_1/No.10

(a) Show that the equation

 $y = \frac{3x-5}{2x+4}$

can be written in the form

$$(x+a)(y+b) = c$$

where a, b and c are integers to be found.

[3 marks]

(b) Write down the equations of the asymptotes of the graph of

$$y = \frac{3x-5}{2x+4}$$

solvedpapers.co.uk	
Sketch, on the axes provided, the graph of	
$y = \frac{3x - 5}{2x + 4}$	
	[3 marks]
<i>V</i> ↑	
<i>O x</i>	

(c)

4. June/2020/Paper_1/No.14

(a) Given

 $\frac{x+7}{x+1} \le x+1$

show that

$$\frac{(x+a)(x+b)}{x+c} \ge 0$$

where a, b, and c are integers to be found.

[4 marks]

(b) Briefly explain why this statement is incorrect.

$$\frac{(x+p)(x+q)}{x+r} \ge 0 \Leftrightarrow (x+p)(x+q)(x+r) \ge 0$$

[1 mark]

5. June/2019/Paper_1/No.5

A hyperbola *H* has the equation

$$\frac{x^2}{a^2} - \frac{y^2}{4a^2} = 1$$

where a is a positive constant.

(a) Write down the equations of the asymptotes of *H*.

(b) Sketch the hyperbola *H* on the axes below, indicating the coordinates of any points of intersection with the coordinate axes.

The asymptotes have already been drawn.

[2 marks]

[1 mark]

so	lved	pa	pers	.co.uk	
		Pu	00.0		

(c) The finite region bounded by *H*, the positive *x*-axis, the positive *y*-axis and the line y = a is rotated through 360° about the *y*-axis.

Show that the volume of the solid generated is ma^3 , where m = 3.40 correct to three significant figures.

[5 marks]

,	1					
0.		l9/Paper_1/No.10				
	(a)	Using the definition of $\cosh x$ and the Maclaurin series expansion of e^x , find the three non-zero terms in the Maclaurin series expansion of $\cosh x$.	e first			
			3 marks			
		L	J marks			
	(b)	Hence find a trigonometric function for which the first three terms of its Maclau series are the same as the first three terms of the Maclaurin series for cosh (i.				

7. June/2019/Paper_1/No.11

(a) Curve C has equation

$$y = \frac{x^2 + px - q}{x^2 - r}$$

where p, q and r are positive constants.

Write down the equations of its asymptotes.

(b) Find the set of possible *y*-coordinates for the graph of

$$y = \frac{x^2 + x - 6}{x^2 - 1}, \qquad x \neq \pm 1$$

giving your answer in exact form.

No credit will be given for solutions based on differentiation.

[6 marks]

8. June/2019/Paper_1/No.14 The graph of $y = x^3 - 3x$ is shown below.

The two stationary points have x-coordinates of -1 and 1

The cubic equation

 $x^3 - 3x + p = 0$

where *p* is a real constant, has the roots α , β and γ .

The roots α and β are **not** real.

(a) Explain why $\alpha + \beta = -\gamma$

[1 mark]

(b) Find the set of possible values for the real constant *p*.

