AQA - Matrices - AS Further Mathematics P1

1. June/2020/Paper_1/No. 4

The matrices A and B are such that

$$
\mathbf{A}=\left[\begin{array}{ccc}
2 & a & 3 \\
0 & -2 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{cc}
1 & -3 \\
-2 & 4 a \\
0 & 5
\end{array}\right]
$$

(a) Find the product AB in terms of a.
\qquad
(b) Find the determinant of $\mathbf{A B}$ in terms of a.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Show that $\mathbf{A B}$ is singular when $a=-1$
[2 marks]
\qquad
2. June/2020/Paper_1/No. 9

The quadratic equation $2 x^{2}+p x+3=0$ has two roots, α and β, where $\alpha>\beta$.
(a) (i) Write down the value of $\alpha \beta$.
[1 mark]
\qquad
\qquad
\qquad
(a) (ii) Express $\alpha+\beta$ in terms of p.
[1 mark]
\qquad
\qquad
\qquad
(b) Hence find $(\alpha-\beta)^{2}$ in terms of p.
[2 marks]
\qquad
3. June/2020/Paper_1/No. 10
(a) Show that the equation

$$
y=\frac{3 x-5}{2 x+4}
$$

can be written in the form

$$
(x+a)(y+b)=c
$$

where a, b and c are integers to be found.
\qquad
(b) Write down the equations of the asymptotes of the graph of

$$
y=\frac{3 x-5}{2 x+4}
$$

[2 marks]
\qquad
\qquad
\qquad
\qquad
(c) Sketch, on the axes provided, the graph of

$$
y=\frac{3 x-5}{2 x+4}
$$

[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4. June/2020/Paper_1/No. 14
(a) Given

$$
\frac{x+7}{x+1} \leq x+1
$$

show that

$$
\frac{(x+a)(x+b)}{x+c} \geq 0
$$

where a, b, and c are integers to be found.
[4 marks]
\qquad
(b) Briefly explain why this statement is incorrect.

$$
\frac{(x+p)(x+q)}{x+r} \geq 0 \Leftrightarrow(x+p)(x+q)(x+r) \geq 0
$$

\qquad
\qquad
\qquad
5. June/2019/Paper_1/No. 5

A hyperbola H has the equation

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{4 a^{2}}=1
$$

where a is a positive constant.
(a) Write down the equations of the asymptotes of H.
\qquad
\qquad
\qquad
(b) Sketch the hyperbola H on the axes below, indicating the coordinates of any points of intersection with the coordinate axes.

The asymptotes have already been drawn.
[2 marks]

(c) The finite region bounded by H, the positive x-axis, the positive y-axis and the line $y=a$ is rotated through 360° about the y-axis.

Show that the volume of the solid generated is $m a^{3}$, where $m=3.40$ correct to three significant figures.
\qquad
6. June/2019/Paper_1/No. 10
(a) Using the definition of $\cosh x$ and the Maclaurin series expansion of e^{x}, find the first three non-zero terms in the Maclaurin series expansion of $\cosh x$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Hence find a trigonometric function for which the first three terms of its Maclaurin series are the same as the first three terms of the Maclaurin series for cosh (ix).
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7. June/2019/Paper_1/No. 11
(a) Curve C has equation

$$
y=\frac{x^{2}+p x-q}{x^{2}-r}
$$

where p, q and r are positive constants.
Write down the equations of its asymptotes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Find the set of possible y-coordinates for the graph of

$$
y=\frac{x^{2}+x-6}{x^{2}-1}, \quad x \neq \pm 1
$$

giving your answer in exact form.
No credit will be given for solutions based on differentiation.
[6 marks]
\qquad
8. June/2019/Paper_1/No. 14

The graph of $y=x^{3}-3 x$ is shown below.

The two stationary points have x-coordinates of -1 and 1
The cubic equation

$$
x^{3}-3 x+p=0
$$

where p is a real constant, has the roots α, β and γ.
The roots α and β are not real.
(a) \quad Explain why $\alpha+\beta=-\gamma$
\qquad
\qquad
\qquad
(b) Find the set of possible values for the real constant p.
\qquad
\qquad
\qquad
\qquad
(c) $\quad \mathrm{f}(x)=0$ is a cubic equation with roots $\alpha+1, \beta+1$ and $\gamma+1$
(c) (i) Show that the constant term of $\mathrm{f}(x)$ is $p+2$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) (ii) Write down the x-coordinates of the stationary points of $y=\mathrm{f}(x)$
\qquad
\qquad
\qquad

