1. June/2020/Paper_1/No. 2

Which one of the matrices below represents a rotation of $90^{\circ}$ about the $x$-axis? Circle your answer.
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right] \quad\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right] \quad\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$
2. June/2019/Paper_1/No. 7

Three non-singular square matrices, $\mathbf{A}, \mathbf{B}$ and $\mathbf{R}$ are such that

$$
\mathrm{AR}=\mathrm{B}
$$

The matrix $\mathbf{R}$ represents a rotation about the $z$-axis through an angle $\theta$ and

$$
\mathbf{B}=\left[\begin{array}{ccc}
-\cos \theta & \sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(a) Show that $\mathbf{A}$ is independent of the value of $\theta$.
$\qquad$
(b) Give a full description of the single transformation represented by the matrix $\mathbf{A}$. [1 mark]
$\qquad$
$\qquad$
$\qquad$

