
AQA - Kinematics - AS Mathematics P1

1. June/2020/Paper_1/No.13

An object is moving in a straight line, with constant acceleration $a \,\mathrm{m}\,\mathrm{s}^{-2}$, over a time period of t seconds.

It has an initial velocity u and final velocity v as shown in the graph below.

Use the graph to show that

v = u + ui	[3 marks

2.	June/	2020	/Paper_	1/1	No.15
	3 4116		· apc	/ '	

A particle, P, is moving in a straight line with acceleration $a \,\mathrm{m}\,\mathrm{s}^{-2}$ at time t seconds, where

$$a = 4 - 3t^2$$

(a) Initially P is stationary.

marks

solved papers.co.uk When $\,t=2$, the displacement of P from a fixed point, O, is 39 metres.

(b)

Fully justify your answer.		
rully justily your allswer.		[5
	······································	

3. June/2019/Paper_1/No.11

A ball moves in a straight line and passes through two fixed points, A and B, which are $0.5\,\mathrm{m}$ apart.

The ball is moving with a constant acceleration of $0.39\,\mathrm{m\,s^{-2}}$ in the direction AB.

The speed of the ball at A is $1.9 \,\mathrm{m\,s^{-1}}$

Find the speed of the ball at B.

Circle your answer.

[1 mark]

 $2 \, \text{m s}^{-1}$

 $3.2\,\mathrm{m\,s^{-1}}$

 $3.8\,{\rm m\,s^{-1}}$

 $4 \, {\rm m \, s^{-1}}$

4.	luno	/2010	/Paper	1 /	No 13
4.	June	/2019	/Paper	_T/I	NO.13

A car, starting from rest, is driven along a horizontal track.

The velocity of the car, $v \, \mathrm{m} \, \mathrm{s}^{-1}$, at time t seconds, is modelled by the equation

$$v = 0.48t^2 - 0.024t^3$$
 for $0 \le t \le 15$

Find the distance the car travels during the first 10 seconds of its journey.	[3 ma
Find the maximum speed of the car.	
Give your answer to three significant figures.	
Give your answer to three significant figures.	[4 m
Give your answer to three significant figures.	[4 m
Give your answer to three significant figures.	[4 m
Give your answer to three significant figures.	[4 m
Give your answer to three significant figures.	[4 m
Give your answer to three significant figures.	[4 m
Give your answer to three significant figures.	[4 m
Give your answer to three significant figures.	[4 m

	solvedpapers.co.u	ık	
Deduce the range of	values of t for which	the car is modelled	as decelerating.
Deduce the range of	values of t for which	the car is modelled	as decelerating.
Deduce the range of	values of t for which	the car is modelled	as decelerating.
Deduce the range of	values of t for which	the car is modelled	as decelerating.
Deduce the range of	values of t for which	the car is modelled	as decelerating.
Deduce the range of	values of t for which	the car is modelled	as decelerating.
Deduce the range of	values of t for which	the car is modelled	as decelerating.
Deduce the range of	values of t for which	the car is modelled	as decelerating.
Deduce the range of	values of t for which	the car is modelled	as decelerating.