## AQA – Kinematics – A2 Mathematics P2

| 1. | June/2020/Paper_2/No.10  A vehicle is driven at a constant speed of 12 m s <sup>-1</sup> along a straight horiz | ontal road. |
|----|-----------------------------------------------------------------------------------------------------------------|-------------|
|    | Only one of the statements below is correct.                                                                    |             |
|    | Identify the correct statement.                                                                                 |             |
|    | Tick (✓) one box.                                                                                               | [1 mark]    |
|    | The vehicle is accelerating                                                                                     |             |
|    | The vehicle's driving force exceeds the total force resisting its motion                                        |             |
|    | The resultant force acting on the vehicle is zero                                                               |             |
|    | The resultant force acting on the vehicle is dependent on its mass                                              |             |
| 2. | June/2020/Paper_2/No.12  A particle, <i>P</i> , is moving with constant velocity 8i - 12j                       |             |
|    | A second particle, Q, is moving with constant velocity $a\mathbf{i}+9\mathbf{j}$                                |             |
|    | Q travels in a direction which is parallel to the motion of P.                                                  |             |
|    | Find a.                                                                                                         |             |
|    | Circle your answer.                                                                                             | [1 mark]    |
|    | -6 $-5$ 5 6                                                                                                     |             |

| 3          | 1        | 12020                                   | /Paper | ~ /  | NI - 4 4 |
|------------|----------|-----------------------------------------|--------|------|----------|
| -5         | II Ine / | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | vaner  | - // |          |
| <b>U</b> . | Julici   | 20201                                   | I abci | ~/   | 110.17   |

At time t seconds a particle, P, has position vector  $\mathbf{r}$  metres, with respect to a fixed origin, such that

$$\mathbf{r} = (t^3 - 5t^2)\mathbf{i} + (8t - t^2)\mathbf{j}$$

| [3 m |
|------|
|      |
|      |
|      |
|      |
|      |
| _    |

| <b>4.</b> June/2020/Paper_2/No. | .16 |
|---------------------------------|-----|
|---------------------------------|-----|

Two particles A and B are released from rest from different starting points above a horizontal surface.

A is released from a height of h metres.

B is released at a time t seconds after A from a height of kh metres, where 0 < k < 1

Both particles land on the surface 5 seconds after A was released.

Assuming any resistance forces may be ignored, prove that

$$t = 5(1 - \sqrt{k})$$

| Fully justify your answer. | [5 marks |
|----------------------------|----------|
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |

| solvedpapers.co.uk |
|--------------------|
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |

| h lung/2020/Dangr 2/No                  |    |  |
|-----------------------------------------|----|--|
| <ol><li>June/2020/Paper_2/No.</li></ol> | 1/ |  |

A ball is projected forward from a fixed point, P, on a horizontal surface with an initial speed  $u \, \text{m s}^{-1}$ , at an acute angle  $\theta$  above the horizontal.

The ball needs to first land at a point at least *d* metres away from *P*.

You may assume the ball may be modelled as a particle and that air resistance may be ignored.

Show that

| $\sin 2\theta \ge \frac{dg}{u^2}$ | TO an entre's |
|-----------------------------------|---------------|
|                                   | [6 marks]     |
| <br>                              |               |
|                                   |               |
| <br>                              |               |
|                                   |               |
| <br>                              |               |

| solvedpapers.co.uk |  |
|--------------------|--|
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |

| 6.         | June/2020/Paper    | 2/No.19   |
|------------|--------------------|-----------|
| <b>U</b> . | Julic/ 2020/1 upci | _2/140.13 |

A particle moves so that its acceleration,  $a\,\mathrm{m}\,\mathrm{s}^{-2}$ , at time t seconds may be modelled in terms of its velocity,  $v\,\mathrm{m}\,\mathrm{s}^{-1}$ , as

$$a = -0.1v^2$$

The initial velocity of the particle is  $4\,m\,s^{-1}$ 

(a) By first forming a suitable differential equation, show that

$$v = \frac{20}{5 + 2t}$$

| 5 + 21 | [6 marks |
|--------|----------|
| <br>   |          |
| <br>   |          |
|        |          |
|        |          |
| <br>   |          |
|        |          |
| <br>   |          |
|        |          |
|        |          |
| <br>   |          |
|        |          |
| <br>   |          |
| <br>   |          |
| <br>   |          |

solvedpapers.co.uk

| Find the acceleration of the particle when $t = 5.5$ | [2 mark |
|------------------------------------------------------|---------|
|                                                      |         |
|                                                      |         |
|                                                      |         |
|                                                      |         |
|                                                      |         |
|                                                      |         |
|                                                      |         |
|                                                      |         |
|                                                      |         |

## **7.** June/2019/Paper\_2/No.10

The diagram below shows a velocity-time graph for a particle moving with velocity  $v \, \text{m} \, \text{s}^{-1}$  at time t seconds.

 $v \text{ (m s}^{-1})$ 



Which statement is correct?

Tick (✓) one box.

[1 mark]

The particle was stationary for  $9 \le t \le 12$ 

The particle was decelerating for  $12 \le t \le 20$ 

The particle had a displacement of zero when t = 6

The particle's speed when t = 4 was  $-12 \,\mathrm{m \, s^{-1}}$ 

| _  |       |        |        |    |       |
|----|-------|--------|--------|----|-------|
| 8. | June/ | /2019/ | 'Paper | 2/ | No.16 |

An elite athlete runs in a straight line to complete a 100-metre race.

During the race, the athlete's velocity,  $v \, \text{m} \, \text{s}^{-1}$ , may be modelled by

$$v = 11.71 - 11.68e^{-0.9t} - 0.03e^{0.3t}$$

where t is the time, in seconds, after the starting pistol is fired.

(a) Find the maximum value of v, giving your answer to one decimal place.

| Fully justify your answer. | [8 marks |
|----------------------------|----------|
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |

|   | solvedpapers.co.uk                                        |      |
|---|-----------------------------------------------------------|------|
|   |                                                           |      |
|   | <del></del>                                               |      |
| • |                                                           |      |
|   | Find an expression for the distance run in terms of $t$ . |      |
|   | •                                                         | [6 m |
|   |                                                           |      |
|   |                                                           |      |
|   |                                                           |      |
|   |                                                           |      |
|   |                                                           |      |
|   |                                                           |      |
|   |                                                           |      |
| - |                                                           |      |
| - |                                                           |      |
| - |                                                           |      |
| - |                                                           |      |
| - |                                                           |      |
| - |                                                           |      |
|   |                                                           |      |
|   |                                                           |      |
|   |                                                           |      |
|   |                                                           |      |
| - |                                                           |      |

solvedpapers.co.uk

The athlete's actual time for this race is 9.8 seconds.

(c)

| Comment on the accuracy of the model. | [2 m |
|---------------------------------------|------|
|                                       |      |
|                                       |      |
|                                       |      |
|                                       |      |

| _ |      |       |        |      |    |
|---|------|-------|--------|------|----|
| 9 | lune | /2019 | /Paner | 2/No | 13 |

In a school experiment, a particle, of mass m kilograms, is released from rest at a point h metres above the ground.

At the instant it reaches the ground, the particle has velocity  $v \, \text{m} \, \text{s}^{-1}$ 

(a) Show that

| $v = \sqrt{2gh}$ | [2 marks] |
|------------------|-----------|
| <br>             |           |
|                  |           |
| <br>             |           |
| <br>             |           |
| <br>             |           |

(b) A student correctly used h = 18 and measured v as 20

The student's teacher claims that the machine measuring the velocity must have been faulty.

Determine if the teacher's claim is correct.

Fully justify your answer.

|      | _    | _ |
|------|------|---|
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
| <br> | <br> |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
| <br> | <br> |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
| <br> | <br> |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
| <br> | <br> |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
| <br> | <br> |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
| <br> | <br> |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
| <br> | <br> |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |

[3 marks]