AQA – Integration – A2 Mathematics P2

1. June/2020/Paper_2/No.5

Use integration by substitution to show that

$$\int_{-\frac{1}{4}}^{6} x\sqrt{4x+1} \, \mathrm{d}x = \frac{875}{12}$$

Fully justify your answer.	[6 marks

solvedpa	pers.co.uk

2.	lune	/2019	/Paper	2	/No.5
∡.	June	/ 2010	/I apci		, 110.5

Solve the differential equation

$$\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{\ln x}{x^2 t} \qquad \text{for } x > 0$$

given x = 1 when t = 2Write your answer in the form $t^2 = f(x)$ [7 marks]

3.	June	/2019	/Paper	_2/No.9	(c-d

(c) Hence, find an approximation for

$$\int_0^{0.4} \sqrt{\cos x} \, \mathrm{d}x$$

giving your answer to five decimal places.

Fully justify your answer.	
	[4 marks

(d) A student decides to use this method to find an approximation for

$$\int_0^{1.4} \sqrt{\cos x} \, \mathrm{d}x$$

Explain why this may not be a suitable method.

[1 mark]