AQA – Integration – A2 Mathematics P1

1. June/2020/Paper_1/No.6

Four students, Tom, Josh, Floella and Georgia are attempting to complete the indefinite integral

$$\int \frac{1}{x} \, \mathrm{d}x \qquad \text{for } x > 0$$

Each of the students' solutions is shown below:

Tom
$$\int \frac{1}{x} \, \mathrm{d}x = \ln x$$

$$\int \frac{1}{x} \, \mathrm{d}x = k \ln x$$

Floella
$$\int \frac{1}{x} \, \mathrm{d}x = \ln Ax$$

Georgia
$$\int \frac{1}{x} \, \mathrm{d}x = \ln x + c$$

(a) (i) Explain what is wrong with Tom's answer.

[1 mark]

(a) (ii) Explain what is wrong with Josh's answer.

[1	mark]

(b) Explain why Floella and Georgia's answers are equivalent.

[2	marks]	

2. June/2020/Paper_1/No.11(a)

The region R enclosed by the lines x = 1, x = 6, y = 0 and the curve

$$y = \ln (8 - x)$$

is shown shaded in Figure 3 below.

Figure 3

All distances are measured in centimetres.

(a) Use a single trapezium to find an approximate value of the area of the shaded region, giving your answer in cm² to two decimal places.

[2 marks]

3. June/2020/Paper_1/No.15

The region enclosed between the curves $y = e^x$, $y = 6 - e^{\frac{x}{2}}$ and the line x = 0 is shown shaded in the diagram below.

Show that the exact area of the shaded region is

$$6 \ln 4 - 5$$

Fully justify your answer.

[10 marks]

solvedpapers.co.uk	

4. June/2020/Paper 1/No.9

Chloe is attempting to write $\frac{2x^2 + x}{(x+1)(x+2)^2}$ as partial fractions, with constant numerators.

Her incorrect attempt is shown below.

Step 1
$$\frac{2x^2 + x}{(x+1)(x+2)^2} \equiv \frac{A}{x+1} + \frac{B}{(x+2)^2}$$

Step 2
$$2x^2 + x \equiv A(x+2)^2 + B(x+1)$$

Step 3 Let
$$x = -1 \Rightarrow A = 1$$

Let $x = -2 \Rightarrow B = -6$

Answer
$$\frac{2x^2 + x}{(x+1)(x+2)^2} \equiv \frac{1}{x+1} - \frac{6}{(x+2)^2}$$

(a) (i) By using a counter example, show that the answer obtained by Chloe cannot be correct.

[2 marks]

(a) (ii) Explain her mistake in Step 1.

[1 mark]

$\frac{2x^2 + x}{(x+1)(x+2)^2}$ as par		[4

- **5.** June/2019/Paper_1/No.16(b_c)
 - (b) Hence, show that

$$\int e^{-x} \sin x \, dx = ae^{-x} (\sin x + \cos x) + c$$

where a is a rational number.	[2 marks]

(c) A sketch of the graph of $y = e^{-x} \sin x$ for $x \ge 0$ is shown below.

The areas of the finite regions bounded by the curve and the x-axis are denoted by $A_1, A_2, ..., A_n, ...$

(c) (i) Find the exact value of the area A_1

[3 marks]

(c)	(iii	Show	that	l

$\frac{A_2}{A_1} = e^{-\pi}$	
	[4 marks]

(c) (iii) Given that

$$\frac{A_{n+1}}{A_n} = e^{-\pi}$$

show that the exact value of the total area enclosed between the curve and the x-axis is

$\frac{1+e^\pi}{2(e^\pi-1)}$	[4 marks]