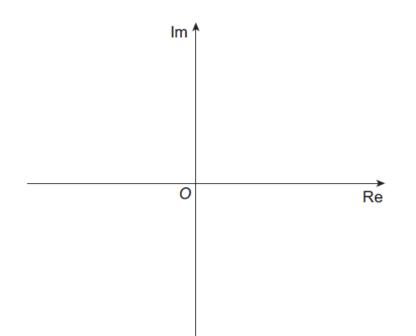
AQA – Hyperbolic functions – AS Further Mathematics P1


- 1. June/2020/Paper_1/No.8
 - (a) Prove that

	solvedpapers.co.uk	
		,
Prove that the graphs of		
	$y = \sinh x$ and $y = \cosh x$	
do not intersect.		
		[3 m

		solvedpapers.co.uk	
2.	June/20	Given that $z_1 = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$ and $z_2 = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$	
	(a)	Find the value of $ z_1 z_2 $	[1 mark]
	(b)	Find the value of $\arg\left(\frac{z_1}{z_2}\right)$	[1 mark]

(c) Sketch z_1 and z_2 on the Argand diagram below, labelling the points as P and Q respectively.

[2 marks]

(d) A third complex number w satisfies both |w| = 2 and $-\pi < \arg w < 0$

Given that *w* is represented on the Argand diagram as the point *R*, find the angle $P\widehat{R}Q$.

Fully justify your answer.

[3 marks]

3. June/2019/Paper_1/No.9

(a) Saul is solving the equation

$$2\cosh x + \sinh^2 x = 1$$

He writes his steps as follows:

$$2\cosh x + \sinh^2 x = 1$$
$$2\cosh x + 1 - \cosh^2 x = 1$$
$$2\cosh x - \cosh^2 x = 0$$
$$\cosh x \neq 0 \quad \therefore \quad 2 - \cosh x = 0$$
$$\cosh x = 2$$

 $x = \pm \cosh^{-1}(2)$

Identify and explain the error in Saul's method.

[2 marks]

(b) Anna is solving the different equation

$$\sinh^2(2x) - 2\cosh(2x) = 1$$

and finds the correct answers in the form $x = \frac{1}{p} \cosh^{-1}(q + \sqrt{r})$, where *p*, *q* and *r* are integers.

Find the possible values of p, q and r.

Fully justify your answer.

[5 marks]