<u>AQA – Further vectors – A2 Further Mathematics P2</u>

1. June/2020/Paper_2/No.1

Three of the four expressions below are equivalent to each other.

Which of the four expressions is not equivalent to any of the others?

Circle your answer.

[1 mark]

$$\mathbf{a} \times (\mathbf{a} + \mathbf{b})$$

$$(a + b) \times b$$

$$(a - b) \times b$$

$$\mathbf{a} imes (\mathbf{a} + \mathbf{b})$$
 $(\mathbf{a} + \mathbf{b}) imes \mathbf{b}$ $(\mathbf{a} - \mathbf{b}) imes \mathbf{b}$ $\mathbf{a} imes (\mathbf{a} - \mathbf{b})$

2	luna	/2020	/Paper	2/1	NA 1E
Z	June/	'2020/	raber	Z/1	NO.TO

The points A(7, 2, 8), B(7, -4, 0) and C(3, 3.2, 9.6) all lie in the plane Π .

Find a Cartesian equation of the plane Π .	[3

		5		15
(b)	The line L_1 has equation $\mathbf{r} =$	-0.4	+ μ	3
		4.8		4

(b) (i) Show that L_1 lies in the plane Π .

[2 marks]

(b) (ii)	Show that every point on L_1 is equidistant from B and C	

[4 marks]

solvedpapers.co.uk

The line L_2 lies in the plane Π , and every point on L_2 is equidistant from A	and <i>B</i> .
Find an equation of the line L_2	[4 marks

(d)

ind the coordinates of D.	
	[3 marks

2	June/2019/Paper	2/No 7
J.	June/ZUL7/Fabel	Z/19U./

The points A, B and C have coordinates A(4, 5, 2), B(-3, 2, -4) and C(2, 6, 1)

(a) Use a vector product to show that the area of triangle ABC is $\frac{5\sqrt{11}}{2}$

[4 marks]

(b) The points A, B and C lie in a plane.

Find a vector equation of the plane in the form $\mathbf{r.n} = k$

[1 mark]

solvedpapers.co.uk

(c)	Hence find the exact distance of the plane from the origin.	[1 mark]

4. June/2019/Paper_2/No.11

The line L_1 has equation

$$\frac{x-2}{3} = \frac{y+4}{8} = \frac{4z-5}{5}$$

The line L_2 has equation

$$\left(\mathbf{r} - \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix}\right) \times \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \mathbf{0}$$

Find the shortest distance between the two lines, giving your answer to three significant figures.

[8 marks

solvedpapers.co.uk