AQA - Further calculus - AS Further Mathematics P1

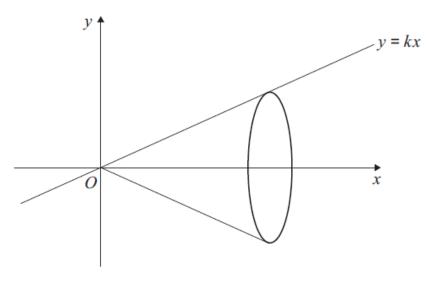
1. June/2020/Paper_1/No.12

The mean value of the function f over the interval $1 \le x \le 5$ is m.

The graph of y = g(x) is a reflection in the x-axis of y = f(x).

The graph of y = h(x) is a translation of y = g(x) by $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$

Determine, in terms of m, the mean value of the function h over the interval $4 \le x \le 8$


interval $4 \le x \le 8$	[2 marks

2. June/2020/Paper_1/No.15

A segment of the line y = kx is rotated about the x-axis to generate a cone with vertex O.

The distance of O from the centre of the base of the cone is h.

The radius of the base of the cone is r.

(a) Find k in terms of r and h.

		[1 mark
_	 	

solvedpapers.co.uk

Use calculus to prove that the volume of the cone is

(b)

	$\frac{1}{3}\pi r^2 h$	[3 marks