AQA – Further algebra and functions – A2 Further Mathematics P1

1. June/2020/Paper_1/No.3

The quadratic equation $ax^2 + bx + c = 0$ ($a, b, c \in \mathbb{R}$) has real roots α and β .

One of the four statements below is incorrect.

Which statement is incorrect?

Tick (✓) one box.

[1 mark]

$$c=0 \Rightarrow \alpha=0 \text{ or } \beta=0$$

$$c=a\Rightarrow \alpha$$
 is the reciprocal of β

$$b < 0$$
 and $c < 0 \Rightarrow \alpha > 0$ and $\beta > 0$

$$b = 0 \Rightarrow \alpha = -\beta$$

2. June/2020/Paper_1/No.5

 H_1 is the locus of points such that the distance from the point (5, 0) is twice the distance from the line x=2

(a) Show that the equation of H_1 can be written in the form

$$(x-1)^2 - \frac{y^2}{q} = r$$

where q and r are integers.	[5 marks

(b) H_2 is the hyperbola

$$x^2 - y^2 = 4$$

Describe fully a sequence of two transformations which maps the graph of ${\cal H}_2$ onto the graph of H_1 [4 marks] 3

3.	luna	/2020	/Paper	1/No.5	Q
J	Julie	/ 2020	/Paper	T/ NO.	٥

The three roots of the equation

$$4x^3 - 12x^2 - 13x + k = 0$$

where \boldsymbol{k} is a constant, form an arithmetic sequence.

Find the roots of the equation.	[6 marks

solvedpapers.co.uk

4. June/2020/Paper_1/No.9

The function f is defined by

$$f(x) = \frac{x(x+3)}{x+4} \qquad (x \in \mathbb{R}, x \neq -4)$$

(a) Find the interval (a, b) in which f(x) does not take any values.

Fully justify your answer.	[5 marks

solvedpapers.co.uk

Find the coordinates of the two stationary points of the graph of $y = f(x)$	[2 r
Show that the graph of $y = f(x)$ has an oblique asymptote and find its ed	quation
Show that the graph of $y = f(x)$ has an oblique asymptote and find its equation $f(x)$	quation
Show that the graph of $y = f(x)$ has an oblique asymptote and find its equation $f(x)$	[2
	[2
	[2
	[2
	[2
	[2 1
	[2 1
	[2
	[2

June/2019/Paper_1/No.1

Which one of these functions has the set $\{x: |x| < 1\}$ as its greatest possible domain?

Circle your answer.

[1 mark]

 $\cosh x$

 $\cosh^{-1} x$

tanh x

 $tanh^{-1}x$

6. June/2019/Paper_1/No.2

The first two non-zero terms of the Maclaurin series expansion of f(x) are x and $-\frac{1}{2}x^3$

Which one of the following could be f(x)?

Circle your answer.

[1 mark]

$$xe^{\frac{1}{2}x^2}$$

$$\frac{1}{2}\sin 2x$$

$$x \cos x$$

$$x\cos x \qquad \qquad (1+x^3)^{-\frac{1}{2}}$$

7. June/2019/Paper_1/No.13

The equation $z^3 + kz^2 + 9 = 0$ has roots α , β and γ .

(a) (i) Show that

$$\alpha^2 + \beta^2 + \gamma^2 = k^2$$

[3 marks]

(a) (ii) Show that

$$\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2 = -18k$$

[4 marks]

- The equation $9z^3-40z^2+rz+s=0$ has roots $\alpha\beta+\gamma$, $\beta\gamma+\alpha$ and $\gamma\alpha+\beta$. (b)
- Show that (b) (i)

1_			40
ĸ	=	_	9

Г4	100 O 11/2
	mark]

[1 mark

solvedpapers.co.uk

(b) (ii)	Without calculating the values of α , β and γ , find the value of s .			
	Show working to justify your answer.	[6 marks		