AQA – Dimensional analysis – AS Further Mathematics Mechanics

1. June/2020/Paper_2/No.6

The magnitude of the gravitational force F between two planets of masses m_1 and m_2 with centres at a distance d apart is given by

$$F = \frac{Gm_1m_2}{d^2}$$

where G is a constant.

	[

solvedpapers.co.uk

(b)

The lifetime t of a planet is thought to depend on its mass m, its radius r, the constant G and a dimensionless constant k such that

$t = km^a r^b G^c$	
where a , b and c are constants.	
Determine the values of a , b and c .	[3 marks

	2 .	lune	/2019	/Paper	2	/No.3
--	------------	------	-------	--------	---	-------

A formula for the elastic potential energy, E, stored in a stretched spring is given by

$$E = \frac{kx^2}{2}$$

where x is the extension of the spring and k is a constant.

Use dimensional analysis to find the dimensions of k .	[3 marks