<u>AQA – Differential equations – A2 Further Mathematics P2</u>

- 1. June/2020/Paper_2/No.12(b)
 - (b) A small object is initially at rest. The subsequent motion of the object is modelled by the differential equation

$$\frac{\mathrm{d}v}{\mathrm{d}t} + v = 5\mathrm{e}^t \sin t$$

where v is the velocity at time t.

Find the speed of the object when $t=2\pi$, giving your answer in exact	form. [6 m
	[·

2. June/2020/Paper_2/No.13

Charlotte is trying to solve this mathematical problem:

Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 10e^{-2x}$$

Charlotte's solution starts as follows:

Particular integral: $y = \lambda e^{-2x}$

SO

 $\frac{\mathrm{d}y}{\mathrm{d}x} = -2\lambda \mathrm{e}^{-2x}$

and

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4\lambda \mathrm{e}^{-2x}$$

(a) Show that Charlotte's method will fail to find a particular integral for the differential equation.

,	[2 marks]
	-

solvedpapers.co.uk

solution of the differential equation.	8]

3. June/2019/Paper_2/No.15

Two tanks, A and B, each have a capacity of 800 litres.

At time t = 0 both tanks are full of pure water.

When t > 0, water flows in the following ways:

- Water with a salt concentration of μ grams per litre flows into tank A at a constant rate
- Water flows from tank A to tank B at a rate of 16 litres per minute
- Water flows from tank B to tank A at a rate of r litres per minute
- Water flows out of tank B through a waste pipe
- The amount of water in each tank remains at 800 litres.

At time t minutes ($t \ge 0$) there are x grams of salt in tank A and y grams of salt in tank B.

This system is represented by the coupled differential equations

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 36 - 0.02x + 0.005y \tag{1}$$

$$\frac{dy}{dt} = 0.02x - 0.02y \tag{2}$$

(a)	Find the value of r .	[2 marks]

solvedpapers.co.uk

Show that $\mu = 3$						[3 r
Solve the coupled	l differential e	quations to	find both	x and y in	terms of t.	[9 1
Solve the coupled	l differential e	quations to	find both	x and y in	terms of t.	[9 1
Solve the coupled	differential e	quations to	find both	x and y in	terms of t.	[9
Solve the coupled	differential e	quations to	find both	x and y in	terms of t.	[9]
Solve the coupled	differential e	quations to	find both	x and y in	terms of t.	[9]
Solve the coupled	differential e	quations to	find both	x and y in	terms of t.	[9]
Solve the coupled	differential e	quations to	find both	x and y in	terms of t.	[9]
Solve the coupled	differential e	quations to	find both	x and y in	terms of t.	[9]
Solve the coupled	differential e	quations to	find both	x and y in	terms of t.	[9 r
Solve the coupled	differential e	quations to	find both	x and y in	terms of t.	[9 r
Solve the coupled	differential e	quations to	find both	x and y in	terms of t.	[9]
Solve the coupled	differential e	quations to	find both	x and y in	terms of t.	[9]
Solve the coupled	differential e	quations to	find both	x and y in	terms of t.	[9]
Solve the coupled	differential e	quations to	find both	x and y in	terms of t.	[9]
Solve the coupled	differential e	quations to	find both	x and y in	terms of t.	[9]

solveupapers.co.uk	