AQA – Complex numbers – A2 Further Mathematics P2

1. June/2020/Paper_2/No.2

Given that $\arg{(a+bi)}=\varphi$, where a and b are positive real numbers and $0<\varphi<\frac{\pi}{2}$, three of the following four statements are correct.

Which statement is not correct?

Tick (✓) one box.

[1 mark]

$$arg(-a-bi)=\pi-\phi$$

$$arg(a-bi) = -\varphi$$

$$\arg\left(b+a\mathrm{i}\right)=\frac{\pi}{2}-\varphi$$

$$\arg(b-ai)=\varphi-\frac{\pi}{2}$$

2. June/2019/Paper_2/No.1

Given that z is a complex number, and that z^* is the complex conjugate of z, which of the following statements is **not** always true?

Circle your answer.

[1 mark]

$$(z^*)^* = z$$
 $zz^* = |z|^2$ $(-z)^* = -(z^*)$ $z - z^* = z^* - z$

3. June/2019/Paper_2/No.6

A circle C in the complex plane has equation |z - 2 - 5i| = a

The point z_1 on C has the least argument of any point on C, and $\arg(z_1) = \frac{\pi}{4}$

Prove that	<i>a</i> =	$\frac{3\sqrt{2}}{2}$
------------	------------	-----------------------

[6 marks]

4. June/2019/Paper_2/No.12

Abel and Bonnie are trying to solve this mathematical problem:

$$z = 2 - 3i$$
 is a root of the equation $2z^3 + mz^2 + pz + 91 = 0$

Find the value of m and the value of p.

Abel says he has solved the problem.

Bonnie says there is not enough information to solve the problem.

(a) Abel's solution begins as follows:

Since
$$z = 2 - 3i$$
 is a root of the equation, $z = 2 + 3i$ is another root.

State **one extra** piece of information about m and p which could be added to the problem to make the beginning of Abel's solution correct.

problem to make the beginning of Aber's solution correct.	[1 mark]
	

solvedpapers.co.uk

[4 mark