AQA – Circular motion – A2 Further Mathematics Mechanics

1.	June/20	020/Paper_3/No.6 A particle moves with constant speed on a circular path of radius 2 metres.		
		The centre of the circle has position vector 2j metres.		
		At time $t = 0$, the particle is at the origin and is moving in the positive i direction.		
		The particle returns to the origin every 4 seconds.		
		The unit vectors i and j are perpendicular.		
	(a)	Calculate the angular speed of the particle. [2 marks		
	(b)	Write down an expression for the position vector of the particle at time t seconds. [2 marks		

solvedpapers.co.uk

Find an expression for the acceleration of the particle at time t seco	inds. [3 mark
State the magnitude of the acceleration of the particle.	[1 mai
State the magnitude of the acceleration of the particle.	[1 ma

2. June/2019/Paper_3/No.2

A particle has an angular speed of 72 revolutions per minute.

Find the angular speed in radians per second.

Circle your answer.

[1 mark]

$$\frac{6\pi}{5}$$

$$\frac{12\pi}{5}$$

$$12\pi$$

$$24\pi$$

3.	lune/	2019	/Paper_	3	/No.7

A particle of mass 2.5 kilograms is attached to one end of a light, inextensible string of length 75 cm. The other end of this string is attached to a point A.

The particle is also attached to one end of an elastic string of natural length 30 cm and modulus of elasticity λ N. The other end of this string is attached to a point B, which is 60 cm vertically below A.

The particle is set in motion so that it describes a horizontal circle with centre B. The angular speed of the particle is $8 \, \text{rad} \, \text{s}^{-1}$

Find λ , giving your answer in terms of g .	[9 marks

sol	vedpapers.co.uk