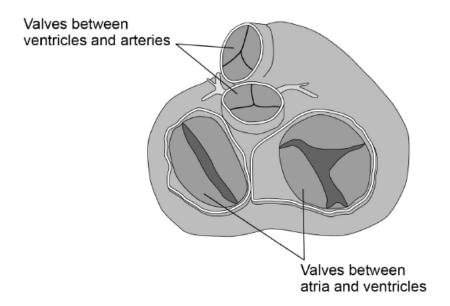
AQA - Cells - AS Biology P2


1. May/2020/Paper_2/No.3

0 3 . 1	Explain how an arteriole can reduce the blood flow into capillaries.	[2 marks]

Figure 1 shows heart valves during one stage of a cardiac cycle.

Ventricles are visible through the open valves.

Figure 1

0 3.2	What can you conclude from the appearance of valves in Figure 1 about heart muscle activity and blood movement between:					
	1. ventricles and arteries?	[2 marks]				
	2. atria and ventricles?					
		[2 marks]				

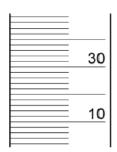
		solvedpaper	s.co.uk		
0 3.3	Tick (✓) one bo	x next to the blood	l vessel carrying b	lood at the lowest	blood pressure. [1 mark]
	Capillary				•
	Pulmonary vein				
	Renal vein				
	Vena cava				
0 3 . 4				of blood pumped in	
	beat (stroke volu	ume) of an athlete	before exercise a	nd calculated the o	ardiac output.
	Cardiac output is	s calculated using	this equation.		
		cardiac outpu	ıt = heart rate × s	troke volume	
	Her results are s	shown in Table 1 .			
			Table 1		
		Heart rate / beats minute ⁻¹	Stroke volume / cm ³	Cardiac output / cm³ minute-1	
		62	80	4960	
	After exercise, the		volume increased	l by 30% and the d	ardiac output

was 13 832 cm³ minute

Calculate the athlete's heart rate after exercise.

Give the answer to 2 significant figures. Show your working.

[2 marks]


Heart rate _____ beats minute⁻¹

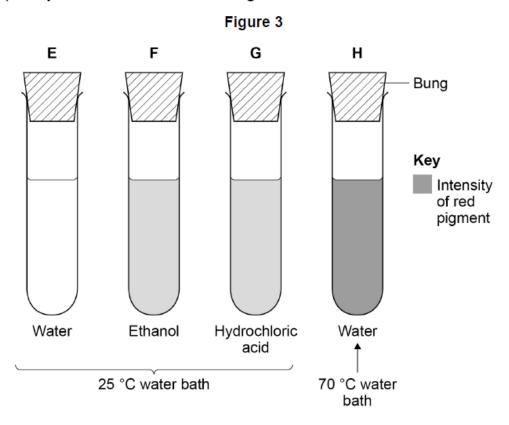
2.	May/2020/Pag	ner 2/No.4
	0 4	A student investigated the effect of ethanol, hydrochloric acid and temperature on the loss of red pigment from beetroot cells.
		During the procedure, the student:
		 added 10 cm³ water into one test tube added 10 cm³ ethanol into a second test tube added 10 cm³ hydrochloric acid into a third test tube put the three tubes into a 25 °C water bath cut four cylinders of tissue from a beetroot put a cylinder into each tube and fitted bungs added 10 cm³ water into a fourth test tube and put this tube into a 70 °C water bath placed the fourth cylinder into this tube and fitted a bung later removed the cylinders from the tubes estimated the intensity of red pigment in each solution by eyesight.
	0 4.1	Give one way in which the student could ensure the first three beetroot cylinders were kept at 25 °C throughout her experiment. [1 mark
	0 4.2	Give two variables that the student did not control in her procedure. [2 marks]

0 4 . 3 The student used a measuring cylinder to obtain 10 cm³ of each solution.

Figure 2 shows some of the scale graduations on the side of this measuring cylinder.

Figure 2

What is the uncertainty of taking a reading of 10 cm³ with this measuring cylinder?


Suggest how you could reduce the uncertainty calculated.

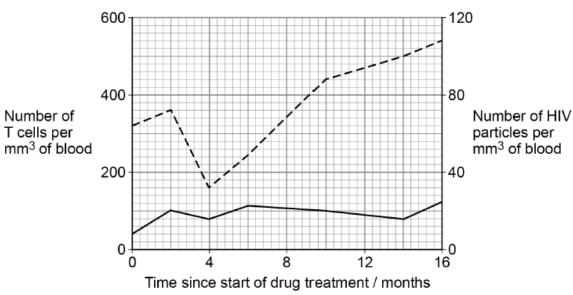
[2 marks]

Uncertainty ± _____ cm³

Reducing uncertainty _____

A different student used the same procedure and she controlled **all** variables appropriately. Her results are shown in **Figure 3**.

0 4 . 4 Using **Figure 3**, what can you conclude about the damage caused to beetroot cells by water, ethanol, hydrochloric acid and different temperatures?


Provide explanations for your conclusions.	[4 marks]

solvedpape	rs.co.uk	

3.	May/2020/Pap	er_2/No.7
	0 7.1	Explain how HIV affects the production of antibodies when AIDS develops in a person [3 marks]

0 7. 2 A scientist measured the effect of a drug on the number of T cells and the number of HIV particles in blood taken from a person with AIDS. The results are shown in Figure 5.

Figure 5

Key

--- T cells

---- HIV particles

Symptoms of AIDS occur when the number of T cells is below 200 cells mm^{-3}

Use all of this information to evaluate the effectiveness of the drug in treating AIDS.

[5 marks]

solvedpapers.co.uk	
	_
	_

4.	May	/2020	/Paper_	2/	No 8
\lnot.	ıvıay	12020	/rapei_	_4/	110.0

0	8		1
---	---	--	---

A scientist measured the pressure in a phloem tube in a willow plant stem. He repeated his measurements to obtain nine readings.

His results are shown in Table 3.

Table 3

		Phloer	n pres	sure / a	rbitrar	y units		
7.4	8.0	7.0	8.6	8.2	9.3	7.4	9.1	8.8

The percentage error of the mean phloem pressure in this phloem tube is calculated using this equation.

$$Percentage error = \frac{uncertainty in measurement}{mean} \times 100$$

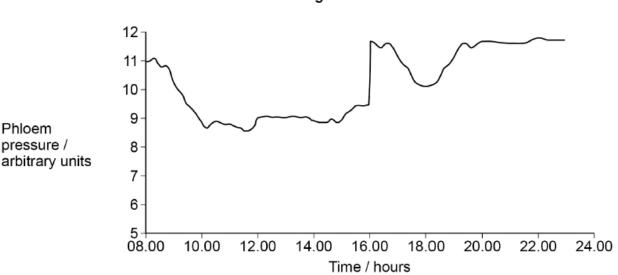
The uncertainty in measurement is half the range of the measured values.

Calculate the percentage error of the mean phloem pressure in this phloem tube.

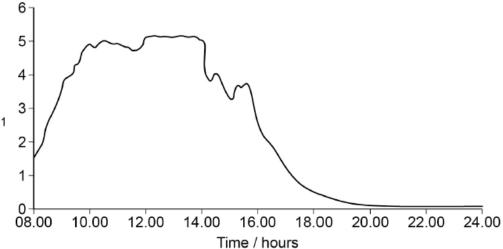
Show your working.

[2 marks]

Percentage error ______ %


0 8 . 2	The mass flow hypothesis is used to explain the movement of substances through phloem.					
	Use your understanding of the mass flow hypothesis to explain how pressure is generated inside this phloem tube.					
	[3 marks]					

Phloem pressure /


The scientist also measured changes in the phloem pressure and changes in the rate of water movement in the xylem of a willow plant at intervals during a day.

His results are shown in Figure 6.

Rate of water movement in xylem / kg hour-1

Describe the relationship between phloem pressure and the rate of water movement in xylem in this plant.

[1 mark]

0 8 . 4	Phloem pressure is reduced during the hottest part of the day. Use information in Figure 6 along with your understanding of transpiration and mass flow to explain why. [3 marks]

5.	May	/2010	/Danor	2/No.2)
J.	iviay	/ 2019	/Paper	2/100.2	_

0 2 . 1

dissociation of oxyhaemoglobin.	on the		
dissociation of oxyridemoglobin.	[2 marks]		

Seals are diving mammals. They fill their lungs with air before they dive and hold their breath during the dive.

Figure 3 shows the dissociation curves for seal oxyhaemoglobin and seal myoglobin. Myoglobin is an oxygen-carrying protein found in muscles.

Figure 3 30 25 Key ---- Myoglobin 20 Oxyhaemoglobin Blood oxygen concentration / cm³ 100 cm⁻³ 15 10 5 0 6 8 10 Partial pressure of oxygen (pO₂) in blood / kPa

0 2 . 2	Use information in Figure 3 to explain how the seal's myoglobin dissociation curve shows the seal is adapted for diving.
	[2 marks]
	[Extra space]
0 2 . 3	Scientists measured the oxygen carrying capacity of seal blood. They found the haemoglobin in a 190 kg seal contained $1.07 \times 10^4 \text{cm}^3$ oxygen. When the seal dived, it used 5.2cm^3 oxygen per minute per kg of body mass.
	Use this information to calculate the maximum number of minutes the seal can remain under water. Assume that all of the oxygen attached to the haemoglobin is released
	during the dive. [2 marks]
	Answer = minutes

6. May/2019/Paper_2/No.4

0 4 . 1	Describe and explain the role of antibodies in stimulating phagocytosis.	
	Do not include details about the process of phagocytosis.	[2 marks

Meningococcus bacteria cause a disease called meningitis. Scientists investigated a new meningitis vaccine (MenG) by measuring changes in blood anti-meningitis antibody concentration in mice.

Each mouse was given three separate MenG injections. The concentration of anti-meningitis antibody was measured in a sample of blood taken soon after each injection.

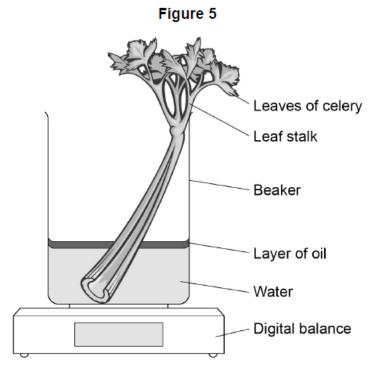
After the 3rd injection, the concentration of anti-meningitis antibody in the blood was also measured after 60 days, after 120 days and then after 180 days.

Figure 4 shows the scientists' results. Each plotted point in **Figure 4** is the result for a different mouse.

Figure 4 10 9 Z 8 7 6 Concentration of anti-meningitis 5 antibody / arbitrary units xxx ХX 4 XX 3 2 XXX XX 1 0 1st 2nd 3rd 60 120 180 injection injection injection Key Days after 3rd injection Protective antibody

concentration

Mean anti-meningitis antibody concentration


0 4 . 2	The scientists discovered that the concentration of anti-meningitis antibody of mouse labelled Z in Figure 4 decreased after the 3rd injection at a constant 0.027 arbitrary units per day.	
	Use this information and Figure 4 to calculate the number of days after the 3rd injection the antibody concentration is higher than the protective antibody concentration for this mouse.	У
		[2 marks]
	Answer =	dave
0 4 . 3	Using Figure 4 , what can you conclude about the effectiveness of each injectiveness of	_ days
	the immune response of these mice?	[4 marks]

0 4 . 4	after the 3rd injection.	Juays
	Suggest and explain a practical method the scientists could use to test this hypothesis.	[2 marks]
		[2 marks]
	[Extra space]	

7. May/2019/Paper_2/No.5

0 5

A student used the apparatus shown in **Figure 5** and a digital balance to determine the rate of water movement in a celery stalk in grams per hour per group of xylem vessels.

0 5 . 1 The student measured the time taken for water movement.

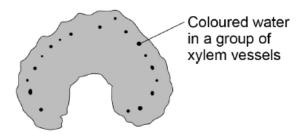
Give **two** other measurements he made to calculate the rate of water movement.

[2 marks]

2

Give the reason for adding a layer of oil to the water in the beaker.

[1 mark]


- 0 5 . 3
- A different student used coloured water to investigate the movement of water in leaf stalks of celery.

During the procedure she:

- · cut equal lengths of stalk from each plant
- put the cut end of each stalk into coloured water
- left these stalks to take up the coloured water for 20 minutes
- used a sharp scalpel to cut slices from the stalks at 1 mm intervals until she reached a slice with no coloured water.

Figure 6 shows a slice of leaf stalk with coloured water inside groups of xylem vessels.

Figure 6

Explain why coloured water moved up the stalks.	[3 marks]

solved	nanarc	co uk
Solveu	papers	.co.uk

0 5 . 4	The student used a sharp scalpel to cut the celery. Describe how she should ensure she handled the scalpel safely during this procedure. [2 marks]									
	The student m stalks. Her results are				the col	oured w	ater ha	d trave	lled in e	eight celery
					Tab	le 1				
				ı	Distanc	ce / mm	1			
		70	35	40	35	30	80	42	44	
0 5 . 5	The student ha				to sumi	marise l	her mea	asurem	ents by	calculating
	Circle the mos Give a reason eight stalks.									s from all
			Mea	an*	Med	lian*	Мо	de*		[2 marks]
	*circle one wo	rd.								
	Reason:									
	Calculation:									
					Ans	swer =				

8.	May/2019/Paper_	2/No.9
••	ay, 2023, 1 apc	,

. 1	Describe the roles of iron ions, sodium ions, and phosphate ions in cells.							
	[Extra space]							

0 9 . 2	The movement of substances across cell membranes is affected by membranes tructure. Describe how.	ane
		[5 marks]