AQA – Algebra functions – AS Mathematics P1

1. June/2020/Paper_1/No.1

At the point (1, 0) on the curve $y = \ln x$, which statement below is correct?

Tick (✓) one box.

[1 mark]

The gradient is negative and decreasing

The gradient is negative and increasing

The gradient is positive and decreasing

The gradient is positive and increasing

Given that f(x) = 10 when x = 4, which statement below must be correct?

Tick (✓) one box.

2. June/2020/Paper_1/No.2

[1 mark]

$$f(2x) = 5 \text{ when } x = 4$$

$$f(2x) = 10$$
 when $x = 2$

$$f(2x) = 10 \text{ when } x = 8$$

$$f(2x) = 20$$
 when $x = 4$

3.	luna	/2020	/Paper	1	/No	۵
ა.	June	/2020	/Paper	Щ,	/ INO.	о.

(a) It is given that

$$f(x) = x^3 - x^2 + x - 6$$

Use the factor theorem to show that $(x-2)$ is a factor of $f(x)$.	[2 mar
Find the quadratic factor of $f(x)$.	[1 ma
Hence, show that there is only one real solution to $f(x) = 0$	[3 ma

(d) Find the exact value of x that solves

$e^{3x} - e^{2x} + e^x - 6 = 0$	[3 marks]

4. June/2019/Paper_1/No.2

Dan believes that

for every positive integer n, at least one of $2^n - 1$ and $2^n + 1$ is prime.

Which value of n shown below is a counter example to Dan's belief?

Circle your answer.

[1 mark]

$$n = 3$$

$$n=4$$

$$n = 5$$

$$n = 6$$

5.	luno	/2010	/Paper	1	/NIa	2
J.	June	/2019	/Paper	Щ,	/ INO.	.3

It is given that (x + 1) and (x - 3) are two factors of f(x), where

$$f(x) = px^3 - 3x^2 - 8x + q$$

(a)	Find the values of p and q .	[3 marks
(b)	Fully factorise f (x).	[2 marks

_					
6.	June.	/2019.	/Paper	1/	/No.4

Show that $\frac{\sqrt{6}}{\sqrt{3}-\sqrt{2}}$ can be expressed in the form $m\sqrt{n}+n\sqrt{m}$, where m and n are integers.

Fully justify your answer.	[4 marks

_					
7.	lune	/2019	/Paper_	1	/No.5
• •	3 4110	, ,	, . apc.	_	,

(a) Sketch the curve y = g(x) where

$$g(x) = (x+2)(x-1)^2$$

[3 marks]

(b) Hence, solve $g(x) \le 0$

[2 marks]
