AQA - Algebra functions - A2 Mathematics P2

1. June/2020/Paper_2/No.1

Which one of these functions is decreasing for all real values of x?

Circle your answer.

[1 mark]

$$f(x) = e^x$$

$$f(x) = e^x$$
 $f(x) = -e^{1-x}$ $f(x) = -e^{x-1}$ $f(x) = -e^{-x}$

$$f(x) = -e^{x-x}$$

$$f(x) = -e^{-x}$$

June/2020/Paper_2/No.2

Which one of the following equations has no real solutions?

Tick (✓) one box.

[1 mark]

$$\cot x = 0$$

 $\ln x = 0$

$$|x + 1| = 0$$

$$\sec x = 0$$

3. June/2020/Paper_2/No.7

 $\it a$ and $\it b$ are two positive irrational numbers.

The sum of a and b is rational.

The product of a and b is rational.

Caroline is trying to prove $\frac{1}{a} + \frac{1}{b}$ is rational.

Here is her proof:

Step 1
$$\frac{1}{a} + \frac{1}{b} = \frac{2}{a+b}$$

Step 2 2 is rational and a + b is non-zero and rational.

Step 3 Therefore $\frac{2}{a+b}$ is rational.

Step 4 Hence $\frac{1}{a} + \frac{1}{b}$ is rational.

(a) (i) Identify Caroline's mistake.

[1 mark]

(a) (ii) Write down a correct version of the proof.

[2 marks]

solvedpapers.co.uk

[4 :

4. June/2019/Paper_2/No.1

Identify the graph of y = 1 - |x + 2| from the options below.

Tick (✓) one box.

[1 mark]

5. June/2019/Paper_2/No.2

Simplify
$$\sqrt{a^{\frac{2}{3}} \times a^{\frac{2}{5}}}$$

Circle your answer.

[1 mark]

$$a^{\frac{2}{15}}$$

$$a^{\frac{4}{15}}$$

$$a^{\frac{8}{15}}$$

$$a^{\frac{16}{15}}$$

6. June/2019/Paper_2/No.3

Each of these functions has domain $x \in \mathbb{R}$

Which function does not have an inverse?

Circle your answer.

[1 mark]

$$f(x) = x^3$$

$$f(x) = x^3$$
 $f(x) = 2x + 1$ $f(x) = x^2$ $f(x) = e^x$

$$f(x) = x^2$$

$$f(x) = e^{x}$$

7.	June	/2019	/Paper_	2/No	.4
	Julicy	2010	ri upci_	_2/140	•

 $x^2 + bx + c$ and $x^2 + dx + e$ have a common factor (x + 2)

Show that 2(d-b) = e-c

Fully justify your answer.	[4 marks