

	Please write clearly in	block capitals.	
	Centre number	Candidate number	
,	Surname		
	Forename(s)		
	Candidate signature	I declare this is my own work.	

AS **MATHEMATICS**

Paper 1

Time allowed: 1 hour 30 minutes

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you need extra space for your answer(s), use the lined pages at the end of this book.
 Write the question number against your answer(s).
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- · The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Exam	niner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	The second secon
12	
13	
14	
15	
TOTAL	

Section A

Answer all questions in the spaces provided.

Find the coefficient of the x term in the binomial expansion of $(3 + x)^4$ Circle your answer.

[1 mark]

12

27

54

108

$${}^{4}C_{0}(x)^{4}(3)^{0} + 4C_{1}(x)^{3}(3)^{1} + 4C_{2}(x)^{2}(3)^{2} + 4C_{3}(x)^{3}(3)^{3}$$

$$x^{4} + 12x^{3} + 54x^{2} + 108x$$

2 Given that $\frac{dy}{dx} = \frac{1}{x}$ find $\frac{d^2y}{dx^2}$

Circle your answer.

[1 mark]

$$-\frac{2}{x^2}$$

$$\left(-\frac{1}{x^2}\right)$$

$$\frac{1}{x^2}$$

$$\frac{2}{x^2}$$

$$\frac{dy}{dx} = x^{-1}$$

$$\frac{d^{2}y}{dx^{2}} = -1 x^{-2} = -1$$

$$\frac{d^{2}y}{dx^{2}} = -1 x^{2}$$

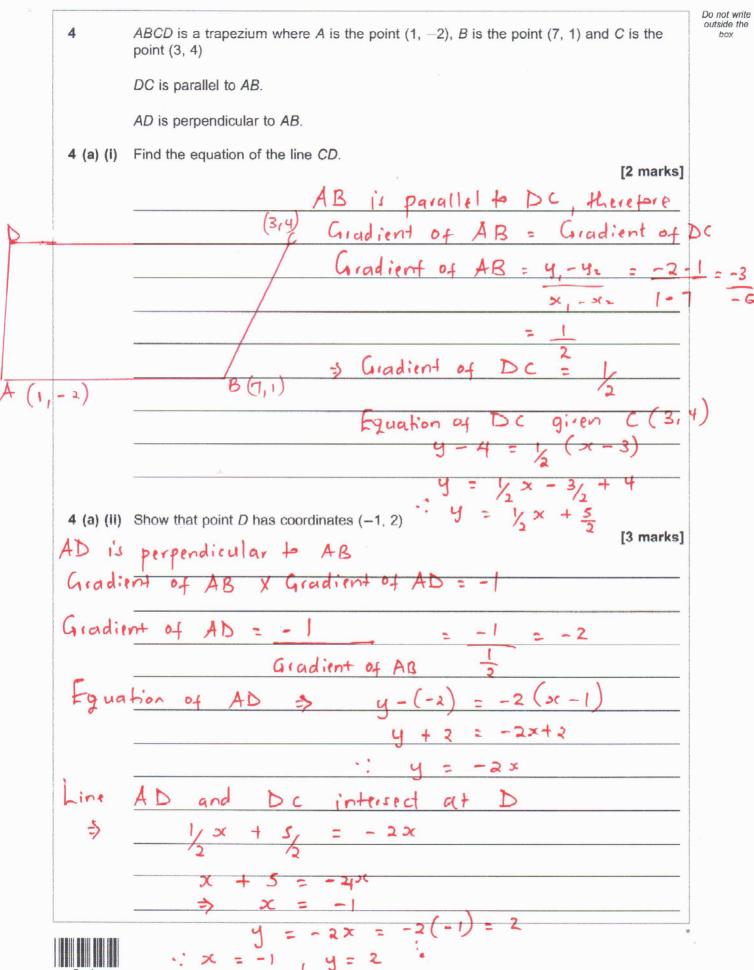
outside the box

- The graph of the equation $y = \frac{1}{x}$ is translated by the vector $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$ 3
- 3 (a) Write down the equation of the transformed graph.

[1 mark]

$$y = 1$$

$$x - 3$$


State the equations of the asymptotes of the transformed graph. 3 (b)

[2 marks]

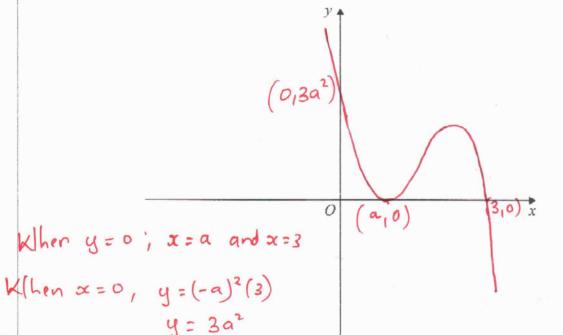
$$\lim_{x \to \pm \infty} \frac{1}{x} = \lim_{x \to \pm \infty} \frac{1}{x} = 0$$

: y has a horizontal asymptote at y=0The asymptotic are: x=3 and y=0

Turn over for the next question

D (-1, 2)

Jun21/7356/1


4 (b) (i) Find the sum of the length of AB and the length of CD in simplified surd form.
AB = B - A $CD = D - C$ [2 marks]
=(7)-(1)
(1) (-2)
= (6) $= (-4)$
$(3) \qquad ((b)) = \int (-4)^2 + (-2)^2$
$ABI = \sqrt{6^2 + 3}$ = $\sqrt{16 + 4} = \sqrt{20}$
= \(\begin{array}{cccccccccccccccccccccccccccccccccccc
= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$= \int 9 \int S \qquad AB + cD = 3 \int S + 2 \int S$
AB = 35 = 55
4 (b) (ii) Hence, find the area of the trapezium ABCD. [2 marks]
AD = D - A
$= \begin{pmatrix} -1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ -2 \end{pmatrix}$
A B = (-Z)
4)
$ AD = \sqrt{(-2)^2 + 4^2}$
= 20 = 25
Area of trapezium = 1 x AD x (AB + CD)
/3
= 1/2 x 2 s x 5 s
= 15 x 5 15
= 5 × 5

5 (a) Sketch the curve

$$y = (x - a)^2 (3 - x)$$
 where $0 < a < 3$

indicating the coordinates of the points where the curve and the axes meet.

[4 marks]

5 (b) Hence, solve

$$(x-a)^2(3-x)>0$$

giving your answer in set notation form.

 $x \neq a$, therefore $x \perp a$ or x is between a and 3 $\frac{(x : x \perp a)^{2} \cup (x : a \perp x \leq 3)^{2}}{(x : x \perp a)^{2} \cup (x : a \perp x \leq 3)^{2}}$


```
A curve has the equation y = e^{-2x}
 6
          At point P on the curve the tangent is parallel to the line x + 8y = 5
          Find the coordinates of P stating your answer in the form (\ln p, q), where p and q are
                                                                                   [7 marks]
   Gradient
                                       -200
                                          both
Grad ient
                                             16
                                                                       1016
                                                                     16
Sides
                                                                         16
                                                                                 Turn over ▶
                                                                                    Jun21/7356/1
```

7 Scientists observed a colony of seabirds over a period of 10 years starting in 2010.

They concluded that the number of birds in the colony, its population P, could be modelled by a formula of the form

$$P = a(10^{bt})$$

where t is the time in years after 2010, and a and b are constants.

7 (a) Explain what the value of a represents.

[1 mark]

a is the population in 2010

7 (b) Show that $\log_{10} P = bt + \log_{10} a$

[2 marks]

7 (c) The table below contains some data collected by the scientists.

Year	2013	2015
t	3	5
P	10 200	12800
log ₁₀ P	4.0086	A.1072

7 (c) (i) Complete the table, giving the $log_{10}P$ value to 5 significant figures.

[1 mark]

Do not write outside the 7 (c) (ii) Use the data to calculate the value of a and the value of b. Log, P = bt + Log a Log a = 4.0086 [4 marks] = 4.0086 -2 (0.0493) H.0086 = 36 + Log a $\frac{1}{2} = \frac{10}{1072} = \frac{4.0086 - 3b}{10}$ $\frac{3.8607}{1072} = \frac{3}{10} + \frac{3}{10} = \frac{3}{10}$ 4.1072 = 56 + 4.0086 - 36 4.1072-4.0086 = 26 b = 0.0493) (iii) Use the model to estimate the population of the colony in 2024. $P = a \left(10^{bt} \right) \qquad \alpha = 7256, \quad b = 0.0493, \quad t = 2024-2010$ 7 (c) (iii) Use the model to estimate the population of the colony in 2024. 7256 X 10 = 7256 X 4.9 ; 35554.7 ≈ 35555 ·! Population in 2024 = 35555

Question 7 continues on the next page

7 (d) (i)	State an assumption that must be made in using the model to estimate the p	opulation
	of the colony in 2024.	

[1 mark]

The value of the Constant b does not change after 10 years that is in 2020

7 (d) (ii) Hence comment, with a reason, on the reliability of your estimate made in part (c)(iii).

[1 mark]

Its not very reliable, because it is only based on data from two years.

8 (a) (i) Show that the equation		Do not write outside the box
	$n \theta \tan \theta = 5 \cos \theta - 2$	
is equivalent to the equation		
	0.000	
3 sino tano = 5 coso - 2	(3 marks)	
33110740 = 36010 - 2	8 cos 20 - 6 cos 0 + 4 cos 0 -	3 = 0
$3\sin\theta\left(\frac{\sin\theta}{\cos\theta}\right) = 5\cos\theta - 2$	2000 (4000 -3) +1 (400	
	= (4 coso - 3)(2 coso +1) =	0
3 sin 8 = 5 cos 0 - 2		
2010		
$3\sin^2\theta = (\cos\theta (5\cos\theta - 2))$		
3 sin2 0 = 5 cos2 0 - 2 cos	6	
But sin20 + cos20 =1		
=> Sin20 = 1 - cos20		
3 (1- cos 20) = 5 cos 20 - 2 cos	8	
3 -3 cos20 = 5 cos20 - 2 cos	Ð	
5 (0520 + 3 (0520 - 2 (050 - 3	<u>-</u> 0	
8 cos2 8 - 2 (01 8 - 3 = 0		
0 (-) (") 0 1 - 11 - 11		
8 (a) (ii) Solve the equation		
3 sir	$\theta \tan \theta = 5 \cos \theta - 2$	
for $-180^{\circ} \le \theta \le 180^{\circ}$	10 marka	
(4 cos 0 - 3) (2 cos 0 +1) =0	[2 marks]	
A coso -3 =0	200011=0	
4000=3	2000 = -1	
(050 = 3/	(010 = -1	
$\theta = \frac{\cos^{-1}(3/4)}{\cos^{-1}(3/4)}$	$0 = \cos^{-1}\left(-\frac{1}{2}\right)$	
0 = +41.4°	.; 0 = ± 120°	

Hence, deduce all the solutions of the equation 8 (b)

$$3\sin\left(\frac{1}{2}\theta\right)\tan\left(\frac{1}{2}\theta\right) = 5\cos\left(\frac{1}{2}\theta\right) - 2$$

for $-180^{\circ} \le \theta \le 180^{\circ}$, giving your answers to the nearest degree.

for
$$-180^{\circ} \le \theta \le 180^{\circ}$$
, giving your answers to the nearest degree.

$$\theta = \pm 41 \cdot 4 \quad \text{or} \quad \pm 120$$

$$\theta = \pm 41 \cdot 4 \quad \text{or} \quad \pm 9 = \pm 126$$

$$\theta = \pm 82 \cdot 8 \quad \theta = \pm 240$$

$$\theta = \pm 82 \cdot 8 \quad \theta = \pm 240$$

$$\theta = \pm 82 \cdot 8 \quad \theta = \pm 240$$

Turn over for the next question

9 A curve has equation

$$y = \frac{a}{\sqrt{x}} + bx^2 + \frac{c}{x^3} \qquad \text{for } x > 0$$

where a, b and c are positive constants.

The curve has a single turning point.

Use the second derivative of y to determine the nature of this turning point.

You do not need to find the coordinates of the turning point.

Fully justify your answer.

[7 marks]

$$y = a + bx^{2} + C$$

$$x^{1/2}$$

$$y = ax^{-1/2} + bx^{2} + Cx^{-3}$$

$$dy = -1 \cdot ax^{-3/2} + 2bx - 3cx^{-1}$$

$$dx$$

$$d^{1/2}y = -1 \cdot x - 3 \cdot ax^{-1/2} + 2b + 12cx^{-5}$$

$$dx^{2}$$

$$d^{2}y = 3ax^{-5/2} + 2b + 12cx^{-5}$$

$$dx^{2}$$

$$dx^{2}$$

$$dx^{2}$$

As 270, a, b and care also 70, therefore all terms must be positive.

So dig is positive

Therefore the turning point is a minimum.

10	
	Do not write outside the box
	And the second s
	The state of the s
	THE PROPERTY OF THE PROPERTY O
	and the control of th
	and the second s
	The state of the s
	- Andread Control of the Control of
Turn over for the next question	
	6

Turn over ▶

Section B

Answer all questions in the spaces provided.

Two forces $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ N and $\begin{bmatrix} -7 \\ -5 \end{bmatrix}$ N act on a particle. Find the resultant force. Recultant = $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ + $\begin{bmatrix} -7 \\ -7 \end{bmatrix}$ N

Circle your answer.

[1 mark]

$$\begin{bmatrix} -21 \\ 10 \end{bmatrix} N \qquad \begin{bmatrix} -4 \\ -7 \end{bmatrix} N \qquad \begin{bmatrix} 4 \\ 3 \end{bmatrix} N \qquad \begin{bmatrix} 10 \\ 7 \end{bmatrix} N$$

11 Jackie says:

"A person's weight on Earth is directly proportional to their mass."

Tom says:

"A person's weight on Earth is different to their weight on the moon."

Only one of the statements below is correct.

Identify the correct statement.

Tick (✓) one box.

[1 mark]

Jackie and Tom are both wrong.

Jackie is right but Tom is wrong.

Jackie is wrong but Tom is right.

Jackie and Tom are both right.

12 A particle P lies at rest on a smooth horizontal table.

A constant resultant force, F newtons, is then applied to P.

As a result P moves in a straight line with constant acceleration $\begin{bmatrix} 8 \\ 6 \end{bmatrix} \text{m}\,\text{s}^{-2}$

12 (a) Show that the magnitude of the acceleration of P is $10 \,\mathrm{m\,s^{-2}}$

 $a = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$

[1 mark]

|a| = 18° + 6

Acceleration = 10 ms

12 (b) Find the speed of P after 3 seconds.

Using equation of motion v = u + at

[1 mark]

3 N = 0 + (0(2)

V = 30 ms-1

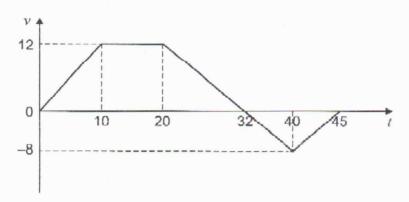
12 (c) Given that $\mathbf{F} = \begin{bmatrix} 2 \\ 1.5 \end{bmatrix} \mathbf{N}$, find the mass of P.

[2 marks]

Magnitude of $F = \sqrt{2^2 + 1.5^2}$

= 2.5

But F=ma


 $\frac{2.5 = m(1/6)}{10}$

.! m = 0.25 kg

Turn over for the next question

13 A car, initially at rest, is driven along a straight horizontal road.

The graph below is a simple model of how the car's velocity, v metres per second, changes with respect to time, t seconds.

13 (a) Find the displacement of the car when t = 45

[3 marks]

Displacement = Area under the curve

Area above = 1 x 12 x (32+10)

= 1/ X 12 X 42

= 252

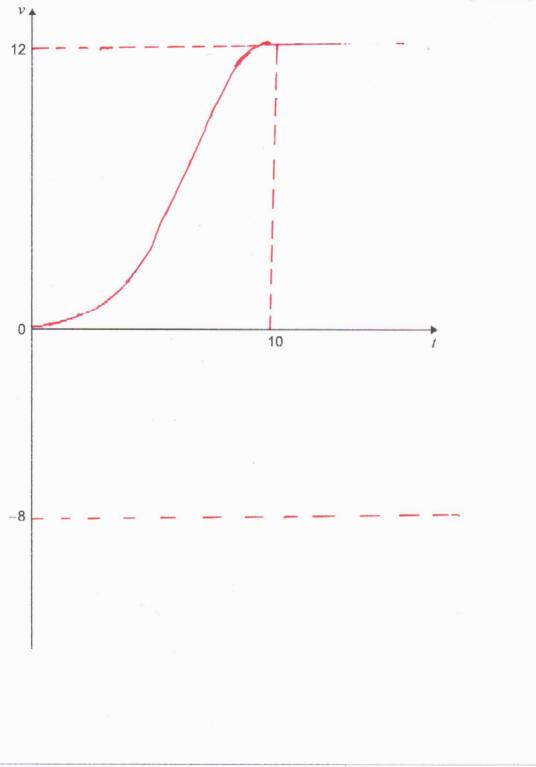
Area below = 1 x 8 x (45-32)

= 1/ x 8 × 13

= 52

: Displacement = 252 - 52

= 200 m



13 (b) Shona says:

"This model is too simple. It is unrealistic to assume that the car will instantaneously change its acceleration."

On the axes below sketch a graph, for the first 10 seconds of the journey, which would represent a more realistic model.

[2 marks]

Turn over ▶

A particle, P, is moving along a straight line such that its acceleration $a \,\mathrm{m}\,\mathrm{s}^{-2}$, at any time, t seconds, may be modelled by

$$a = 3 + 0.2t$$

When t = 2, the velocity of P is $k \text{m s}^{-1}$

Show that the initial velocity of P is given by the expression $(k - 6.4) \,\mathrm{m \, s^{-1}}$

= (3 + 0·2 t dt

 $= 3t + 0.2t^{2} + c$

: N = 3t + 0.1t2 + c

Khen t= 2, v= K

K = 3(2) + 0.1(22) + c

K = 6 + 0. 4 + C

K = 6.4 + C

· : C = K - 6.4

- V = 3t + 0.1t + K-6.4

Since V= c, when t=0, the initial velocity

V = 0 + K-6.4

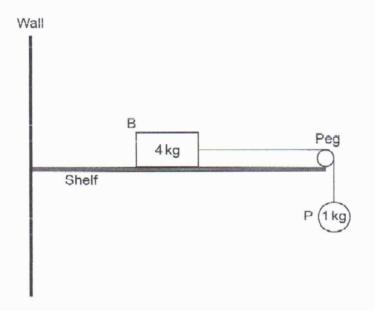
-: V = (K-6.4) m5

Do not write
outside the
box

14 (b)	The initial velocity of P is one fifth of the velocity when $t=2$	
	Find the value of k .	
	Klhen t=2, Velocits of P= K	[2 marks]
	1 K = K-6.4 (initial Velocity)	
	K-yK = 6.4	
	0.8K = 6.4	
	6/8 0.8	
	K = 8	
	-! K = 8	
		Name of the Owner of the Owner, when the Owner, which t

Turn over for the next question

Turn over ▶


15 In this question, use $g = 10 \,\mathrm{m \, s^{-2}}$

A box, B, of mass 4 kg lies at rest on a fixed rough horizontal shelf.

One end of a light string is connected to B.

The string passes over a smooth peg, attached to the end of the shelf.

The other end of the string is connected to particle, P, of mass 1 kg, which hangs freely below the shelf as shown in the diagram below.

B is initially held at rest with the string taut.

B is then released.

B and P both move with constant acceleration ams⁻²

As B moves across the shelf it experiences a total resistance force of 5 N

15 (a) State one type of force that would be included in the total resistance force.

Friction force between B and the horizontal

Shelf.

15 (b) Show that $a = 1$	Do not wri
Fnet = ma [4 marks]
for R.	
T - 5 = 4a (i)	
For A:	
T - mq = m(-a)	
T-ma = -a(ii) => T-(ix10) = -a => T	-10 = -
Solving (i) and (ii) Simultaneously	
from (i) T = 4a + 5, replacing it in(i)	
4a + 5 - 10 = -a	
5a = 5	
5 5	
·! a =	
15 (c) When B has moved forward exactly 20 cm the string breaks.	
Find how much further B travels before coming to rest.	
Velocity of B before the string breaks:	
Using equation of motion V2 = u2 + 291	
U=0, a=1, 5=20=0	. 2
$5 V^2 = 0 + 2 \times 1 \times 0.2$	
N2 = 0.4	
·: V = 0.4 ms	
	,
Acceleration of B after the string breaks	
F = ma	
-5 = Aa	

a = -1.25

Turn over

	finding the distance betse B comes to rest.
	$V^2 = u^2 + 291$
	V=0, U= Jo.4, Q=-1.25, 5=?
	$\frac{0}{-\left(\sqrt{10\cdot 4}\right)^2+\left(2\times -1\cdot 25\right)5}$
	0 = 0.4 - 2.55
	5 2./5 5 = 0.4
	2/5 2.5
	S = 0·16
	· : Distance = 0.16 m
(d)	State one assumption you have made when finding your solutions in parts (b) or (c) . [1 mark]
	1) There is no air resistance to the motion
	2.) String is inextensible.

END OF QUESTIONS

15