

Please write clearly in	n block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE MATHEMATICS

Higher Tier

Paper 1 Non-Calculator

Tuesday 5 November 2019

Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

· mathematical instruments

You must not use a calculator.

Instructions

- · Use black ink or black ball-point pen. Draw diagrams in pencil.
- . Fill in the boxes at the top of this page.
- · Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer book.

Advice

In all calculations, show clearly how you work out your answer.

For Examiner's Use		
Pages	Mark	
2-3		
4-5		
6–7		
8-9	and the second of	
10-11		
12–13		
14-15		
16–17		
18–19		
20–21		
22-23		
24–25		
26		
TOTAL		

Answer all questions in the spaces provided

1

$$250 \times 0.15$$

2 Solve 3x = 2xCircle your answer.

[1 mark]

$$x = -1$$

$$x = 0$$

$$x=\frac{2}{3}$$

$$x = \frac{3}{2}$$

3 A is (2, 13) and B is (10, 1) MidPoint = $\begin{pmatrix} x + x_2 \\ y + y_3 \end{pmatrix}$ Circle the midpoint of AB. $= 2 + 10 \quad |3 + 1|$ = (6, 1)[1 mark]

- (4, 6)
- (5, 6.5)
- (6, 7)
- (8, 12)

4 Circle the expression equivalent to $(2x)^4$

[1 mark]

$$2x^{4} \qquad 6x^{4} \qquad 8x^{4} \qquad 16x^{4}$$

$$= 2 \times$$

$$= 16 \times$$

Turn over for the next question

5 (a) Here are two triangles, P and Q.

Here is a statement.

A transformation that maps P to Q is a reflection in the line x = -1

Make one criticism of the statement.

[1 mark]

The equation of the Mirror line should be y = -1.

5 (b) Here are two shapes, C and D.

Here is a statement.

A transformation that maps C to D is a rotation through 90° anticlockwise.

Make one criticism of the statement.

[1 mark]

No centre of votation is given. The centre

F votation is (0,0)

Turn over for the next question

6 (a) A geometric progression starts

Work out the next term.

- A Fibonacci-type sequence starts 6 (b)

The sequence is continued by adding the previous two terms.

Work out the next two terms.

$$T_3 = 7 + 7 = +3 + 8 = -5$$

$$T_4 = 7 + 7 = -8 + -5$$

$$= -13$$

[2 marks]

Answer _____ and ___13

7 Given that $a \times 60 = b$ work out the value of $\frac{4b}{a}$

[2 marks]

ax60 = 6

Substitute
$$4b = 4(ax60) = 240$$
 d
$$b = ax60$$
 a a

= 240

Answer 246

8 Write $27 \times (3^2)^7$ as a single power of 3

[3 marks]

Answer 3

Turn over for the next question

9 Here are two solids.

Cylinder

radius 4 cm height 10 cm

Hemisphere

radius 6 cm

volume of a hemisphere $=\frac{2}{3} \pi r^3$ where r is the radius

Do	not	writ
out	side	e the
	ha	v

Which solid has the greater volume?	
You must show your working.	[4 marks]
Volume of cylinder - Tr2h	
= 7x 4x4x10	
= 160 x cm3	
Volume of hemisphere = 2 7,3	
3	
= 27×6×6×4	
_ 1447 cm3	OLIVE CONTRACTOR OF THE PARTY O
160% is greats than 144%	
The cylinder has greater volume H	Zak.
the hemuphere.	
Answer	

Turn over for the next question

4

Turn over ▶

Saj makes Rose Pink paint and Cherry Pink paint.

He mixes red paint with white paint as shown.

Rose Pink

red : white = 1 : 2

Cherry Pink

red: white = 4:3

He makes 60 litres of Rose Pink paint.

To this Rose Pink paint he adds

80 litres of red paint and 28 litres of white paint.

Has he now made Cherry Pink paint?

You must show your working.

[4 marks]

Red: White	
11: 2 1+2=3	Add: 20:40
60 Litres = 3 = 20	80:28
Go Litres of nose Pink	100:68
R. W	4 7
20 × (; 2)	25:17
50 × 1: 5	
= Nos this is	not Cherry Pink, It is
in the rati	0 25:17 but not 4:3.

11 (a) Work out

$$\frac{2\times10^{14}}{8\times10^9}$$

Give your answer in standard form.

2 x10t	= 200000 0000000000	الله على الله [2 marks] الله على الله الله الله الله الله الله الله ال
8X109	2 00000000	0.25×10
WARRANT TO THE PARTY OF THE PAR	= 25,000	= 2.5x104
	= 2.5 xid	
	2 = 4.4	

11 (b) $6200.07 = 6.2 \times 10^c + 7 \times 10^d$

Work out the values of c and d.

[2 marks]

$$6200.07 = 6200 \rightarrow 6.2x1^{3} + 7x10^{-2}$$

$$= 6.2x1^{3} + 7x10^{-2}$$

$$c = 3$$
 $d = -2$

Turn over for the next question

12	$V = \frac{k}{H}$	where k i	is a constant.			
	Which to	wo statemer	nts are correct?	VXI		
	Tick two	boxes.		10		
				$V \propto \frac{1}{H}$ $V = \frac{K}{H}$		[1 mark]
			V is directly pro	portional to ${\cal H}$		
		V	V is inversely pr	roportional to $\cal H$		
			V is directly pro	portional to $\frac{1}{H}$		
			V is inversely pr	roportional to $\frac{1}{H}$		

The *n*th term of a sequence is $\frac{n(n-4)}{\sqrt{n+3}}$

Work out the sum of the 1st and 6th terms.

[3 marks]

T = n(n-4)	[Sillativa]
Substitute In+3	7+7=-3+4
has 1 and 6. = 1 (1-4)	2 1
1+3	$= 2\frac{1}{2} \propto 2.5$
= (-3)	
$= -\frac{2}{3} - 3 = -\frac{1.5}{5}$	
$\frac{7}{6} = \frac{6(6-4)}{6} = \frac{12}{3}$	
70+3 = 4	-

Answer

14 8300 = 100 × 83

Circle the number that is closest in value to $\sqrt{8300}$

[1 mark]

19 (90) 830 900

$$=\sqrt{100 \times 83}$$
 $=\sqrt{100} \times \sqrt{83}$
 $=\sqrt{100} \times \sqrt{83}$
 $=\sqrt{100} \times \sqrt{83}$
 $=\sqrt{100} \times \sqrt{83}$

Do not write
outside the
box

Here is a **sketch** of a quadrilateral.

All lengths are in centimetres.

	2 <i>x</i>	
x	X	
L	2x	

Not drawn accurately

Tick one box for each statement.

[3 marks]

	True	May be true	Not true
The quadrilateral is a rectangle	,	~	
The quadrilateral is a parallelogram	V		
The quadrilateral is a rhombus	,		V
The quadrilateral is a kite		,	V

16 In a box there are some buttons.

45 are large and the rest are small.

Some are yellow and the rest are green.

The number of small is $\frac{5}{3}$ of the number of large.

The number of green is 300% of the number of yellow.

There are 12 small yellow buttons.

How many large green buttons are there?

You may use the two-way table to help you.

[4 marks]

	Large	Small	
Yellow	18	12	30
Green	27	63	90
	45	75	

Number of SMall = 5x45	3:1
75	Total = 120
Number of green: 4ello3	3 x120 = 90
12 Small yellow buttons.	1/4 ×120 = 30
Answer 27	

17
$$\mathbf{a} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ $\begin{pmatrix} -3 \\ 2 \end{pmatrix} - 3 \begin{bmatrix} 1 \\ -5 \end{pmatrix}$

Work out $\mathbf{a} - 3\mathbf{b}$

Circle your answer. $\begin{pmatrix} -3 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 15 \end{pmatrix} = \begin{pmatrix} 6 \\ 17 \end{pmatrix}$

[1 mark]

$$\begin{pmatrix} -6 \\ 17 \end{pmatrix} \qquad \begin{pmatrix} -6 \\ -13 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 17 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ -13 \end{pmatrix}$$

18 Solve $\frac{x+15}{3} = 2(x+10)$

 $\frac{X+1\Sigma}{2} = 2X+20$ [4 marks]

Mumphy by I latt aire

x+15= 3(2x+20)

X+15= 6x+60

x-6x=60-15

-8x - 45 -5 -5

x = -9

 $x = \frac{}{}$

Turn over ▶

outside the

20 The Venn diagram shows information about some houses.

G = houses with a garage

S = houses with a shed

A house is chosen at random.

20 (a) The house has a garage.

What is the probability that it has a shed?

$$P(shed) = Total 7 8 + 13 = 21$$

$$P(shed) = \frac{8}{21}$$
Answer
$$\frac{8}{21}$$

[1 mark]

20 (b) The house does not have a garage.

What is the probability that it does not have a shed?

[1 mark]

$$P(Not shed) =$$

$$Total = 1144 \quad Answer$$

$$= 15$$

$$P(Not shede) = 4/5$$

20 (c)	Show that $P(G \cap S)' > P(G \cup S')$ $P(G \cap S)' = (13 + 11 + 4)$		[2 marks]
	· 36	28	is greater
	= 28	36	25
	P(4Us)= 13+8+4	Inan	36
	36		
	= 25/36		

21 Work out 0.7048 – 0.001 Circle your answer.

[1 mark]

$$0.7038 \qquad 0.7038 \qquad 0.70383 \qquad 0.70384$$

$$-0.70484848 - 0.0000 - 0.0010000 - 0.70384848$$

$$= 0.70384848 - 0.70384848$$

$$= 0.70384848 - 0.70384848$$

Turn over for the next question

22 (-3, 10) is a point on line L.

(4, 0) and (6, 10) are points on line M.

L and M are parallel.

Not drawn accurately

Work out the equation of line $\ensuremath{\mathsf{L}}$.

Give your answer in the form y = mx + c

_	[3 marks]
Gradient = 4 - 4	For Parallel lines gradients are
Chradient = 3 - 3	Same.
X -×,	$y = mx + c \left(-3, 10\right)$
_ 10-0	U- 5x+C Equation & L
6-4	Pausing (-3,10)
= 10	10= -15 + C
= 5	C = 10+15 C = 25
Answer	y= 5x+25

23 (a)

Factorise

 $5x^2 + 6x - 8$

Product = -40 (0,4)

[2 marks]

5x2+10x -4x-8

5x(x+2)-4(x+2)

(x+2)

(5x-4) (x+2

23 (b)

Simplify fully $x^2 + 9x + 14$

 x^{2} $4 = (x-2)(x+2) + x^{2}$ [3 marks]

P= 14 (7,2)

(X+7) (X+2)

 $x^2 + 7x + 2x + 14$

(x/7) + 2(x/7) = x+7

= (x+7) (x+2)

Answer

Turn over for the next question

Work out $\sqrt{18} - \frac{28}{\sqrt{50}}$ Give your answer in the form $\frac{\sqrt{a}}{b}$ where a and b are integers.

[4 marks] $= \sqrt{9 \times 2} - \frac{28}{25 \times 2}$

= 3(5 - 58 × 15

= 3/2 - 58/2

- 315 - 5815

 $= \frac{301^2 - 281^2}{10}$ $= \frac{2\sqrt{2}}{10} = \frac{\sqrt{2}}{5} = \sqrt{2}$

Answer $\sqrt{2}$ $a=\sqrt{2}$, b=5

- 25 A bag contains 8 balls.
 - 3 are red and 5 are blue.
 - 2 balls are taken from the bag at random without replacement.
- 25 (a) Write down the probability that there is at least 1 red ball still in the bag.

[1 mark]

[3 marks]

P(RR)(RB) or BB

Answer 1

If PER. The probabily at least 1-rad = 13 1

25 (b) Work out the probability that there are at least 2 red balls still in the bag.

3/8 2 5/7 B --- BR B 24/7 B --- BB

Probabily at Least Zrad balls

= 1 - 6

= 50 56

Answer

8

Turn over ▶

26 Here are a circle and a sector of the circle.

They each have radius r.

circumference of circle = perimeter of sector

Work out the size of angle x.

Give your answer in terms of $\boldsymbol{\pi}$

[4 marks]

Circumfence = $2\pi V$ Perimetr of Sector = $\frac{X}{360}$ $2\pi V = \frac{X}{360} \times 2\pi V + 2\pi V$ Stride $\frac{X}{360} \times 2\pi V + 2\pi V$ $1 = \frac{X}{360} + \frac{1}{2\pi V} \times 2\pi V$ $1 = \frac{X}{360$

outside the box

A curve has the equation $y = x^2 - 6x + 17$ 27

The turning point of the curve is at (a, 8)

27 (a) By completing the square, or otherwise, work out the value of a.

[2 marks]

 $y = x^2 - 6x + 17$

Answer

The turning point of the curve $y = x^2 + 4x + b$ also has y-coordinate 8 27 (b) Work out the value of h.

[2 marks]

Answer 12

28	Work out the value of $100^{-\frac{1}{2}}$ Any number $a^{\frac{1}{2}} = \sqrt{9}$	[2 marks]
	$=\frac{1}{100^2} = \frac{1}{100}$	
	Answer 10 or 0.1	

Show that the value of $5\sin 30^{\circ} \times \cos 30^{\circ} \times 8\tan 30^{\circ}$ is an integer.

[4 marks]

$$\frac{5}{5} \times \frac{13}{3} \times \frac{8}{3} \times \frac{3}{3} \times \frac{3$$

END OF QUESTIONS

