

Please write clearly in	ı block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)	-		
Candidate signature			

A-level MATHEMATICS

Paper 2

Wednesday 12 June 2019

Morning

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- · Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- · Answer all questions.
- You must answer each question in the space provided for that question.
 If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- . The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
TOTAL	

Section A

Answer all questions in the spaces provided.

1 Identify the graph of y = 1 - |x + 2| from the options below.

Tick (✓) one box.

[1 mark]

3

Do not write outside the

2 Simplify
$$\sqrt{a^{\frac{2}{3}} \times a^{\frac{2}{5}}}$$

Circle your answer.

from the laws of indices $a \times a^{c} = a^{b+c}$ $(a^{b})^{2} = a^{2b}$

[1 mark]

$$a^{\frac{2}{15}} x = a^{\frac{4}{15}} + \frac{2}{15} x = a^{\frac{16}{15}}$$

$$a^{\frac{2}{15}} x = a^{\frac{16}{15}} x = a^{\frac{16}{15}}$$

$$a^{\frac{16}{15}} x = a^{\frac{16}{15}} x = a^{\frac{16}{15}}$$

3 Each of these functions has domain $x \in \mathbb{R}$

Which function does not have an inverse?

Circle your answer.

[1 mark]

$$f(x) = x^3$$
 $f(x) = 2x + 1$ $f(x) = x^2$ $f(x) = e^x$

A function to have an inverse it must be one to one, that is for each value of y, there is turn over for the next question only one possible value of x.

$$f(x) = x^2$$
 is not one to one example $f(1) = 1^2$

$$f(-1) = 1^2$$

4
$$x^2 + bx + c$$
 and $x^2 + dx + e$ have a common factor $(x + 2)$
Show that $2(d - b) = e - c$
Fully justify your answer.

[4 marks]

If $(a + 2)$ is a factor, when $a = -2$,

$$f(x) = 0$$

When $a = -2$ $a^2 + ba + c = 0$

$$(-a)^2 + b(-a) + c = 0$$

$$(-a)^2 + d(-a) + e = 0$$

$$(-a)^2 + e = 0$$

$$(-a)^$$

6 A curve has equation

$$y = a \sin x + b \cos x$$

where a and b are constants.

The maximum value of y is 4 and the curve passes through the point $\left(\frac{\pi}{3}, 2\sqrt{3}\right)$ as shown in the diagram.

Find the exact values of a and b.

[6 marks]

$$y = a \sin x + b \cos x$$

$$R \sin (x + x) = a \sin x + b \cos x$$

$$Maximum \quad value \quad of \quad y = 4 = R$$

$$A \sin (x + x) = a \sin x + b \cos x$$

$$Af \quad \text{Ke point} \left(\pi_{1}, 2 \pi_{3} \right)$$

$$A \sin \left(\pi_{1} + x \right) = 2\pi$$

$$3 \quad \text{Fin} \left(\pi_{1} + x \right) = 2\pi$$

$$3 \quad \text{Fin} \left(\pi_{1} + x \right) = 5\pi$$

$$3 \quad \text{Fin} \left(\pi_{1} + x \right) = 5\pi$$

$$3 \quad \text{Fin} \left(\pi_{1} + x \right) = 5\pi$$

$$T_{1/3} + \alpha = 5in^{-1} \left(-\frac{53}{2}\right)$$
 $T_{1/3} + \alpha = 2\frac{\pi}{3}$

Recall

$$R \sin \alpha = b$$

 $R \cos \alpha = a$

A sin
$$\pi_3 = b$$

$$4 \times \int_{2}^{3} = b$$

$$2 \int_{3}^{3} = b$$

$$2\cos x = a$$

$$4\cos x/3 = a$$

$$4x/2 = a$$

$$3a = 2$$

$$a = 2$$
 $b = 2\sqrt{3}$

7 (a) Sketch the graph of any cubic function that has **both** three distinct real roots and a positive coefficient of x^3

[2 marks]

7 (b) The function f(x) is defined by

$$f(x) = x^3 + 3px^2 + q$$

where p and q are constants and p > 0

7 (b) (i) Show that there is a turning point where the curve crosses the y-axis.

[3 marks]

$$f(x) = 3x^3 + 3pa^2 + q$$

$$f'(x) = 30(^{2} + 6px = 0)$$

5 There are two terning points of the function fix), because x = 0 is a terning point of the

fonction, then there must be a terning point

where the curve crosser the y-axis

7 (b) (ii) The equation f(x) = 0 has three distinct real roots.

By considering the positions of the turning points find, in terms of p, the range of possible values of q.

 $\alpha = 0$ is the minimum tuning point. [5 marks]

Since p > 0, $\alpha = -2p$ is the maximum tuning point. $f(x) = \alpha^3 + 3p\alpha^2 + q - - - - (i)$ Substituting $\alpha = 0$ and $\alpha = -2p$ into (i) $f(0) = 0^3 + 3p(0) + q$ f(0) = q $f(-2p) = (-2p)^3 + 2p(-2p)^2 + q$ $- (-2p) = (-2p)^3 + 12p^3 + q$ $- (-2p) = (-2p)^3 + q$ Since $p > 0 = (-2p)^3 + q$ Since $p > 0 = (-4p)^3 + q$ Since $p > 0 = (-4p)^3 + q$

8 Theresa bought a house on 2 January 1970 for £8000.

The house was valued by a local estate agent on the same date every 10 years up to 2010.

The valuations are shown in the following table.

Year	1970	1980	1990	2000	2010
Valuation price	£8 000	£19000	£36 000	£82000	£205 000

The valuation price of the house can be modelled by the equation

$$V = pq^t$$

where V pounds is the valuation price t years after 2 January 1970 and p and q are constants.

8 (a) Show that $V = pq^t$ can be written as $\log_{10} V = \log_{10} p + t \log_{10} q$

[2 marks]

required.

Do not write outside the box

The values in the table of $\log_{10} V$ against t have been plotted and a line of best fit has been drawn on the graph below. 8 (b)

t	0	10	20	30	40
log ₁₀ V	3.90	4.28	4.56	4.91	5.31

Turn over ▶

Using the given line of best fit, find estimates for the values of p and q.

Give your answers correct to three significant figures.

Equation of the line of best fit is of the marks]

form y = moc + b where m is the gradient of the line and b is the y-intercept.

Log V = thog 9 + Log P

 $\frac{\log 9 = 0.0344}{(0.0344)} = 1.082679 \sim 1.08$

: 9 = 1.08

log P is the y - intercept = 3.90 log P = 3.90 = P = 10 = 7943. log p = 3.90 = P = 10 = 7943.

8 (c)	Determine the year in which Theresa's house will first be worth half a million pounds. V = 500,000 [3 marks]
	Log V = t log P + Log P
	V = P9*
	500,000 = 7940 X 1.08
	500,000 = 1.08t
	7940 t = hog 62.9723
	t = 53.82
	19 75 F 52 5 00122
\$	The house will first be worth halt a million
8 (d)	Explain whether your answer to part (c) is likely to be reliable.
	[2 marks]
,	No because the model is only based on
	data from 1970 to 2010.
	House Prices may not continue to grow in
	the same way indefinitely.
	The many many many many many many many many

9 (a)	Show that the first two terms of the binomial expansion of $\sqrt{4-2x^2}$ are	
	$ \frac{2 - \frac{x^2}{2}}{4 - 2x^2} = \left(4 - \frac{2x^2}{2}\right)^{\frac{1}{2}} $ $ = \left(4\left(1 - \frac{x^2}{2}\right)\right)^{\frac{1}{2}} $ $ \frac{1}{4 - 2x^2} = 2\left(1 - \frac{x^2}{2}\right)^{\frac{1}{2}} $	2 marks]
•	$\frac{2\left(\frac{1}{2}\right)^{\frac{1}{2}\left(-x^{2}\right)^{\circ}} + \left(\frac{1}{2}\right)^{\frac{1}{2}\left(-x^{2}\right)^{\frac{1}{2}}} = 2\left(1 - \frac{x^{2}}{4}\right)$ $\frac{2\left(\frac{1}{2}\right)^{\frac{1}{2}\left(-x^{2}\right)^{\frac{1}{2}}}{2} = 2\left(1 - \frac{x^{2}}{4}\right)$	
	= 2 - 3	
9 (b)	State the range of values of x for which the expansion found in part (a) is valid	
	The range of values of x for $2-x^2$	2 marks]
	17th 10th of Vallaces of 2 124 2 2	13
	Valid When - x2 /	į.
	1 2-1 4 2	
	5 x" 2	
	$\frac{1}{2}$	

9 (c) Hence, find an approximation for

$$\int_0^{0.4} \sqrt{\cos x} \, dx$$

giving your answer to five decimal places.

	Fully justify your answer.	0.9
A CONTRACTOR OF THE PROPERTY O	Because of is a small angle, cosx will be	$\int_{0}^{\pi} 1 - x^{2} dx $ [4 marks]
THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	approximated as cosx = 1-x2	$= x - x^3$
	٠ - ٧	12 6
	$1-x^2$ dx	= (0.4 - 0.43) - 0
	J V 2	12
	$\left(\frac{4}{1-x^2}\right)^{\frac{1}{2}}dx$	= 0.39467
The second second	Expansion of $\left(1-\frac{x^2}{2}\right)^{\frac{1}{2}}$	
	1.1 1/2 1.0	
The second second second second	$= \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$	
	$= 1 + y(-x^2)$,
The second secon	= 1- 2/2/2/	
1	///	

9 (d) A student decides to use this method to find an approximation for

$$\int_0^{1.4} \sqrt{\cos x} \, \mathrm{d}x$$

Explain why this may not be a suitable method.

[1 mark]

1.4 radians is not a small angle Herefort the approximation method is not suitable.

Turn over for Section B

Turn over ▶

Answer all questions in the spaces provided.

10 The diagram below shows a velocity-time graph for a particle moving with velocity $v \, \text{m s}^{-1}$ at time t seconds.

Which statement is correct?

Tick (✓) one box.

[1 mark]

The particle was stationary for $9 \le t \le 12$

The particle was decelerating for $12 \le t \le 20$

The particle had a displacement of zero when t = 6

The particle's speed when t = 4 was $-12 \,\mathrm{m \, s^{-1}}$

oft 54, the particle was moving wife a constant speed 4 ft fq, the particle was accelerating 9 ft fig. the particle was moving with a constant speed 9 ft fla, the particle was moving with a constant speed

12 It = 20, le particle was decelerating.

11 A wooden crate rests on a rough horizontal surface.

The coefficient of friction between the crate and the surface is 0.6

A forward force acts on the crate, parallel to the surface.

When this force is 600 N, the crate is on the point of moving.

Find the weight of the crate.

Circle your answer.

[1 mark]

A particle, under the action of two constant forces, is moving across a perfectly 12 smooth horizontal surface at a constant speed of 10 m s⁻¹

The first force acting on the particle is (400i + 180j) N.

The second force acting on the particle is (pi - 180j) N.

Find the value of p.

Circle your answer.

[1 mark]

390 400

The second force is acting in the apposite direction.

In a school experiment, a particle, of mass m kilograms, is released from rest at a point h metres above the ground.

At the instant it reaches the ground, the particle has velocity $v \, \text{m} \, \text{s}^{-1}$

13 (a) Show that

13 (b) A student correctly used h = 18 and measured v as 20

The student's teacher claims that the machine measuring the velocity must have been faulty.

Determine if the teacher's claim is correct.

Fully justify your answer.

$$V = \sqrt{2gh}$$
 $g = 9.8$, $h = 18$

$$= \sqrt{2 \times 9.8 \times 18}$$

$$= \sqrt{352.8}$$

$$18.78 \neq 20$$
 therefore the teacher's claim is correct that the machine measuring the velocity must have been faulty.

cm to m

A metal rod, of mass m kilograms and length 20 cm, lies at rest on a horizontal shelf.

The end of the rod, B, extends 6 cm beyond the edge of the shelf, A, as shown in the diagram below.

14 (a) The rod is in equilibrium when an object of mass 0.28 kilograms hangs from the midpoint of *AB*.

Show that m = 0.21

[3 marks]

Taking	moments about A	converting
	mg X_4 = 0.28g X 3,	
	100	
	mg x 0.04 = 0.289 x 0.0	3
	0.04 md = 0.0084 d	
	m = 0.0084	
	0.04	
	= 0.21	

14 (b) The object of mass 0.28 kilograms is removed.

A number, n, of identical objects, each of mass 0.048 kg, are hung from the rod all at a distance of 1 cm from B.

Find the maximum value of n such that the rod remains horizontal.

[4 marks]

The rod is in equilibrium Herefore,

Taking moments about A

0.21g x 4 = 0.048g x 5 x n

0.21g x0.04 = 0.048g x0.05xn

0.0084g = 0.0034g u

= 0.0084

1 = 3-5

Therefore the maximum value of n is, n=

14 (c) State one assumption you have made about the rod.

[1 mark]

The rod is uniform.

The weight of the rod acts in the middle at 10 cm.

Turn over for the next question

Turn over ▶

[5 marks]

Four buoys on the surface of a large, calm lake are located at A, B, C and D with position vectors given by

$$\overrightarrow{OA} = \begin{bmatrix} 410 \\ 710 \end{bmatrix}$$
, $\overrightarrow{OB} = \begin{bmatrix} -210 \\ 530 \end{bmatrix}$, $\overrightarrow{OC} = \begin{bmatrix} -340 \\ -310 \end{bmatrix}$ and $\overrightarrow{OD} = \begin{bmatrix} 590 \\ -40 \end{bmatrix}$

All values are in metres.

15 (a) Prove that the quadrilateral ABCD is a trapezium but not a parallelogram.

AB = -620 -180

CD = 0B - 0Z

= 590] - -340 -40 -310

= [930]

 $= \begin{cases} 930 \\ 270 \end{cases} = -1.5 - 620 \\ -180 \end{cases}$

Plerepre CB = - 1.5 AB

This implies that CD and AB are parallel

but not equal in length, therefore ABCD is a trapezium not a parallelogram.

2 2

15 (b)	A speed boat travels directly from B to C at a constant speed in 50 s	econds.
	Find the speed of the boat between B and C. Speed = Distance Time-	[4 marks]
	$BC = o\vec{c} - o\vec{B}$	
	= -3407210	
	L-310 _ 530 _	
	= [-130]	
	-840	
	BC = (-130) 2 + (-840) 2	
)
	= 722500	
	028 =	
	Speed = 850 = 17	
	50	
	- : Speed = 17 ms	

16 An elite athlete runs in a straight line to complete a 100-metre race.

During the race, the athlete's velocity, $v m s^{-1}$, may be modelled by

$$v = 11.71 - 11.68e^{-0.9t} - 0.03e^{0.3t}$$

where t is the time, in seconds, after the starting pistol is fired.

16 (a) Find the maximum value of v, giving your answer to one decimal place.

Fully justify your answer.

Maximum Velocity occurs when acceleration is equal 3+

1
V=11.476 = 11.5
Therefore the maximum Value of V when
$dv_{f} = 0$ is $V = 11.5 \text{ m}^{5}$
dt
16 (b) Find an expression for the distance run in terms of <i>t</i> .
Let the distance be S [6 marks]
-S - (V dt
0.9t 0.3t
= 11.71 - 11.68e - 0.03e dt
- 11.71t - 11.68 0 200 to
= 11.71t - 11.68 e - 0.03 e tc
-0.9 0.3 -0.91 -0.31
= 11.71t + 12.978e -0.9t -0.37 +C
When the athlete is at rest, too and so
5 = 0 + 12.978 - 0.1 + c
0 = 12.878 + C
5 C = - 12 · 87 8
-0.9t -0.3t
Hance (S)= 11.71t + 12.978e -0.1e -12.878
Question 16 continues on the next page

2 5

Turn over ▶

16 (c) The athlete's actual time for this race is 9.8 seconds.	Do not write outside the box
Comment on the accuracy of the model.	
S=11.71t + 12.978e -0.1e -12.878	
At $t = 9.8$ (-0.9×9.8) (0.3×9.8)	()
5 = 11.71(9.8) +12.978 & -0.1e.	1267 8
= 114.758 + 12.9780 - 8.87 - 0.10 -	12878
: 99.99m ~ 100	
The model predicts the distance to be 99.9	9 m
which is very close to 100m, therefore the n	nodel
is accorate.	
	1

17 Lizzie is sat securely on a wooden sledge.

The combined mass of Lizzie and the sledge is M kilograms.

The sledge is being pulled forward in a straight line along a horizontal surface by means of a light inextensible rope, which is attached to the front of the sledge.

This rope stays inclined at an acute angle θ above the horizontal and remains taut as the sledge moves forward.

The sledge remains in contact with the surface throughout.

The coefficient of friction between the sledge and the surface is μ and there are no other resistance forces.

Lizzie and the sledge move forward with constant acceleration, $a \, \mathrm{m} \, \mathrm{s}^{-2}$

The tension in the rope is a constant T Newtons.

17 (a) Show that

$$T = \frac{M(a + \mu g)}{\cos \theta + \mu \sin \theta}$$

[7 marks]

Resolving Vertically:

R(1) R + Tsin0 = Mg

R = Mg - Tsin0 ---- (i)

Revolving Lorizontally using equation of motion

F = ma;

R(>) T cos 0 - F = Ma . ---- (ii)

Because Lizzie is in limiting equilibrium

F = UR where M is the coefficient of friction.

Replacing the value of F in (ii) with MR

Tros 0 - MR = Ma (iii)

Replacing Equation (i) in (iii) gives;

And you in company to a company of the company of t	Trose - U(Ma - Tsine) = Ma
	Trosa - UMa + U Trian - Ma
	Trose + U Tsine = Ma + U Ma
	1 (coso + plsino) = M(a + plg)
	Coso & Usine cose + Usine
	-! T = M (a + Olg) A required
	Coso + Usino
17 (b)	It is known that when $M=30,\;\theta=30^{\circ}$, and $T=40,$ the sledge remains at rest.
	Lizzie uses these values with the relationship formed in part (a) to find the value for μ
	Explain why her value for μ may be incorrect.
	[2 marks]
	triction may not be acting at its limiting
	Value because the sledge remains at rest,
	hence the relation in part (a) above may
	not be valid.
	not be validi.

END OF QUESTIONS

