AQA - Quantitative Chemistry - GCSE Chemistry Paper_3

1. June/2021/Paper_1F/No.10(10.1),(10.3)

1 0 This question is about the extraction of metals.

Element **R** is extracted from its oxide by reduction with hydrogen.

The equation for the reaction is:

 $3H_2 + RO_3 \rightarrow R + 3H_2O$

1 0. 1 The sum of the relative formula masses (M_r) of the reactants (3 H₂ + RO₃) is 150 Calculate the relative atomic mass (A_r) of R.

Relative atomic masses (A_r): H = 1 O = 16

[2 marks]

Relative atomic mass (A_r) of **R** =

2.	June/2021/Paper_	1H/No.3	(3.3)
----	------------------	---------	-------

0 3. Carbon is used to extract tin (Sn) from tin oxide (SnO₂).

The equation for the reaction is:

$$SnO_2 + C \rightarrow Sn + CO_2$$

Calculate the percentage atom economy for extracting tin in this reaction.

Relative atomic masses (A_r): C = 12 O = 16 Sn = 119

[3 marks]

Percentage atom economy = %

3.	lune	/2021	/Paper_	1H	/No 5	5.6
J.	Julie/	2021	/rapei_		וכ.טאו	ن.د

0 5. 6 Iron chloride is produced by heating iron in chlorine gas.

The equation for the reaction is:

$$2\,\text{Fe} \,\, + \,\, 3\,\text{Cl}_2 \,\, \rightarrow \,\, 2\,\text{FeCl}_3$$

Calculate the volume of chlorine needed to react with 14 g of iron.

You should calculate:

- the number of moles of iron used
- the number of moles of chlorine that react with 14 g of iron
- the volume of chlorine needed.

Relative atomic mass (A_r) : Fe = 56

The volume of 1 mole of gas = 24 dm^3

[3	marks]
----	--------

Volume of chlorine = _____ dm³

4.

June/2021/Pap	per_1H/No.7(7.8)	
0 7.8	Determine the number of atoms of copper produced when copper nitrate solution electrolysed for 20 minutes at a current of 0.6 A	on is
	Give your answer to 3 significant figures.	
	Use Figure 5.	
	Relative atomic mass (A_r): Cu = 63.5	
	The Avogadro constant = 6.02×10^{23} per mole [3	marks

Number of atoms (3 significant figures) =

solvedpapers.co.uk

5 .	June/2021/Pap	per_1H/No.8(8.2)	
	0 8.2	Calculate the volume of oxygen required to react with 50 cm ³ of hydrogen sulfide. [1 n	nark]
		Volume =	cm ³

6.	June/2021/Paper_	1H/No.9(9.4	9.5)
••	Jane, Loui, aper_	_=: :, : (0:5(5::)_	,

		_			
0	9	. 4	4	Ethanedioic acid is a solid at room t	temperature

Calculate the mass of ethanedioic acid $(H_2C_2O_4)$ needed to make 250 cm³ of a solution with concentration 0.0480 mol/dm³

Relative formula mass (M	H_r): $H_2C_2O_4 = 90$
--------------------------	---------------------------

[2 marks]

Mass = ____ g

The student found that 25.0 cm³ of the sodium hydroxide solution was neutralised by 15.00 cm³ of the 0.0480 mol/dm³ ethanedioic acid solution.

The equation for the reaction is:

$$H_2C_2O_4 + 2NaOH \rightarrow Na_2C_2O_4 + 2H_2O$$

Calculate the concentration of the sodium hydroxide solution in mol/dm³

[3 marks]

Concentration = _____ mol/dm³