
AQA - Organic Chemistry - GCSE Chemistry Paper_2

1. June/2021/Paper_2F/No.3

0 3 This question is about substances used to make windows and window frames.

Figure 2 shows a window.

Figure 2

0 3 . 1 Glass is made by heating sand with **two** other materials.

Which two other materials are used to make glass?

[2 marks]

Tick (✓) two boxes.

Clay

Graphite

Limestone

Sodium carbonate

Sodium hydroxide

Window frames need to be:

- easy to install
- resistant to damage.

The polymers poly(chloroethene) and HDPE are used to make window frames.

Table 3 shows information about poly(chloroethene) and HDPE.

Table 3

Property	Poly(chloroethene)	HDPE
Density in g/cm ³	1.4	0.92
Relative strength	72	25

0 3.2	Suggest one advantage of using poly(chloroethene) compared with HDPE to make window frames.
	Give one reason for your answer.
	Use Table 3. [2 marks]
	Advantage
	Reason
0 3.3	Suggest one advantage of using HDPE compared with poly(chloroethene) to make window frames.
	Give one reason for your answer.
	Use Table 3. [2 marks]
	Advantage
	Reason

0 3. 4 Figure 3 shows the displayed structural formula of poly(chloroethene).

Figure 3

$$\begin{pmatrix} H & Cl \\ -C & -C \\ -1 & H \end{pmatrix}$$

Which monomer is used to make poly(chloroethene)?

[1 mark]

Tick (✓) one box.

0 3 . 5	Chlorine gas is used to produce poly(chloroethene).
	Describe a test to identify chlorine gas.
	Give the result of the test. [2 marks]
	Test
	Result
0 3.6	Wood can be used instead of polymers to make window frames.
	Polymers are unreactive.
	Polymers are produced from crude oil.
	Wood breaks down in wet conditions.
	Wood is produced from trees.
	Suggest one advantage of using polymers and one advantage of using wood to make window frames.
	[2 marks]
	Advantage of polymers
	Advantage of wood

Window frames can also be made from an alloy of aluminium.

0 3 . 7

6.00 kg of the alloy is used to make a window frame.

Table 4 shows the mass of each element in 6.00 kg of the alloy.

Table 4

Element	Mass in kg
Aluminium	5.94
Magnesium	0.04
Silicon	0.02

	Calculate the percentage of aluminium in 6.00 kg of the alloy.	[2 marks
	Percentage of aluminium =	%
0 3.8	Why is an alloy used instead of pure aluminium to make window frames?	[1 mark

2.

June/2021/Pa	per_2F/No.7			
0 7	This question is about	t organic compounds.		
0 7 . 1	Butane is an alkane w	vith small molecules.		
	Complete the sentence	ce.		
	Choose the answer from	om the box.		
				[1 mark]
	fertiliser	formulation	fuel	
	lertiliser	Tormulation	iuei	
	Butane can be used a	as a		
	5			
0 7 . 2	Poly(propene) is a po	lymer.		
	What is the name of the	he monomer used to produce	poly(propene)?	[1 mark]
	Tick (✓) one box.			[1110011]
	Propane			
	Dramanaia aaid			
	Propanoic acid			
	Propanol			
	Propene			

	Ethene and steam react to produce ethanol.							
	The equation for the reversible reaction is:							
		ethene	+	steam	=	ethanol		
0 7.3	The reaction of ethene and	•			oretical i	mass of 400	kg of ethan	ol from 243 kg
	A company p	roduces 38	80 kg	of ethanol	from 24	13 kg of ethe	ene and 157	kg of steam.
	The percenta	ige yield of	etha	nol is less	than 10	0%		
	Calculate the	percentag	e yiel	d of ethan	ol.			
	Use the equa	ation:						
	percentage	yield of et	hano	$I = \frac{mas}{maxim}$	ss of eth	nanol actuali retical mass	ly made s of ethanol	× 100
								[2 marks]
	Percentage yield =%							
0 7.4	What are two than 100%?	o possible r	easo	ns why the	e percen	itage yield o	f ethanol is	less
	Tick (✓) two	boxes.						[2 marks]
	Ethanol is the	e only prod	uct of	f the reacti	on.			
	Ethanol is ve	ry unreacti	ve.					
	Some ethano	ol changes	back	into ethen	e and st	team.		
	Some ethano	ol escapes	from	the appara	atus.			
	Some ethano	ol reacts wit	th ste	am.				

0 7. 5 Ethanol burns in oxygen.

Balance the equation for the reaction.

[1 mark]

$$C_2H_5OH + _{--}O_2 \rightarrow 3H_2O + 2CO_2$$

- 0 7.6 Two processes for producing ethanol are:
 - fermentation
 - hydration (reacting ethene with steam).

Table 5 shows information about the processes.

Table 5

Feature	Process			
reature	Fermentation	Hydration		
Raw material	sugar	crude oil		
Energy usage	low	high		
Rate of reaction	slow	fast		
Purity of ethanol	15%	98%		

Give **two** advantages and **two** disadvantages of using fermentation to produce ethanol.

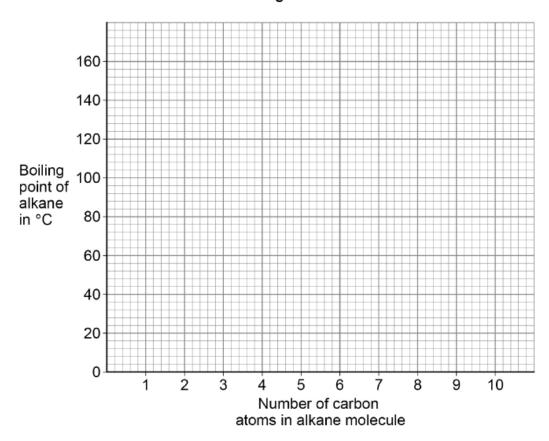
	[4 marks]
Advantage of fermentation 1	
Advantage of fermentation 2	
Disadvantage of fermentation 1	
Disadvantage of fermentation 2	

3. June/2021/Paper_2F/No.9

0 9

This question is about alkanes.

Table 6 shows information about some alkanes.


Table 6

Number of carbon atoms in alkane molecule	Boiling point of alkane in °C
4	0
5	36
6	69
7	x
8	126
9	151

0 9 . 1 Plot the data from Table 6 on Figure 7.

[2 marks]

Figure 7

0 9 . 2	Predict the boiling point X of the alkane with seven carbon atoms in a molecule.		
	Use Table 6 and Figure 7 .	1 mark]	
	X =°C		
0 9.3	Figure 7 is not suitable to show the boiling point of the alkane with three carbo atoms in a molecule.	on	
	Suggest one reason why.	1 mark]	
0 9 . 4	What is the state at 20 °C of the alkane with four carbon atoms in a molecule? Use Table 6 .		
		1 mark]	

Table 6 is repeated below.

Table 6

Number of carbon atoms in alkane molecule	Boiling point of alkane in °C
4	0
5	36
6	69
7	x
8	126
9	151

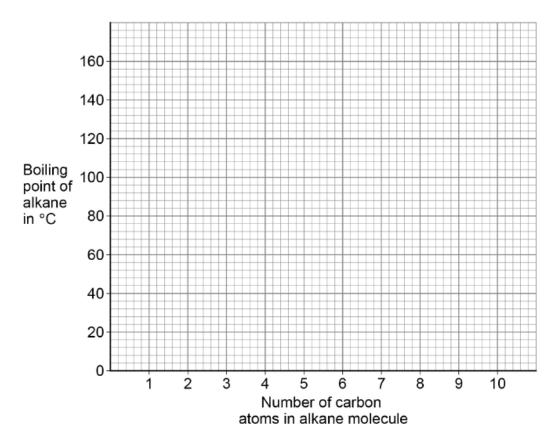
The alkane with nine carbon atoms in a molecule is called nonane.

0 9 . 5	Complete the formula of nonane.	[1 mark]
	C ₉ H	
0 9 . 6	Nonane will condense lower in a fractionating column during fractional distithan the other alkanes in Table 6 .	llation
	Explain why. You should refer to the temperature gradient in the fractionating column.	[2 marks]

4. June/2021/Paper_2H/No.2

0 2 This question is about alkanes.

Table 1 shows information about some alkanes.


Table 1

Number of carbon atoms in alkane molecule	Boiling point of alkane in °C
4	0
5	36
6	69
7	x
8	126
9	151

0 2 . 1 Plot the data from Table 1 on Figure 2.

[2 marks]

Figure 2

	1 1 2 2 2 2 2	
0 2.2	Predict the boiling point X of the alkane with seven carbon atoms i	n a molecule.
	Use Table 1 and Figure 2.	[1 mark]
	v	
	X =	°C
	1	
0 2 . 3	Figure 2 is not suitable to show the boiling point of the alkane with atoms in a molecule.	three carbon
	Suggest one reason why.	[1 mark]
0 2 . 4	What is the state at 20 °C of the alkane with four carbon atoms in	a molecule?
<u> </u>	•	inolecale:
	Use Table 1 .	[1 mark]

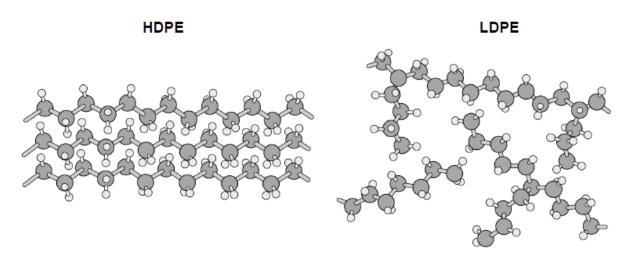
Table 1 is repeated below.

Table 1

Number of carbon atoms in alkane molecule	Boiling point of alkane in °C
4	0
5	36
6	69
7	x
8	126
9	151

The alkane with nine carbon atoms in a molecule is called nonane.

0 2.5	Complete the formula of nonane.	[1 mark]
	C ₉ H	
0 2.6	Nonane will condense lower in a fractionating column during fractional distill than the other alkanes in Table 1 .	ation
	Explain why.	
	You should refer to the temperature gradient in the fractionating column.	[2 marks]


5. June/2021/Paper_2H/No.4

0 4. 4 Two different forms of poly(ethene) are:

- high density poly(ethene) (HDPE)
- low density poly(ethene) (LDPE).

Figure 4 represents part of the structures of HDPE and LDPE.

Figure 4

Explain why HDPE has a higher density than LDPE.	[2 marks

Figure 5 shows three monomers, A, B and C.

Monomer A can react with monomer B and with monomer C to produce polyesters.

Figure 5

0 4 . 5 Draw a circle on **Figure 5** around an alcohol functional group.

[1 mark]

- 0 4 . 6 Complete **Table 2** to show the formula of the small molecule produced when:
 - monomer A reacts with monomer B
 - monomer A reacts with monomer C.

[1 mark]

Table 2

Reacting monomers	Formula of small molecule produced
A and B	
A and C	

6.	luna	/2021	/Paper	2Н	/Na 6
u.	Julie	/ 2021	/rapei	211	/ INO.O

0 6 This question is about cycloalkenes.

Cycloalkenes are ring-shaped hydrocarbon molecules containing a double carbon-carbon bond.

Cycloalkenes react in a similar way to alkenes.

O 6. 1 Describe a test for the double carbon-carbon bond in cycloalkene molecules.

Give the result of the test.

[2 marks]

Test

Result

0 6. 2 Table 3 shows the name and formula of three cycloalkenes.

Table 3

Name	Formula		
Cyclobutene	C ₄ H ₆		
Cyclopentene	C ₅ H ₈		
Cyclohexene	C ₆ H ₁₀		

Determine the general formula for cycloalkenes.	[1 mark]
General formula =	

Figure 6 shows the displayed structural formula of cyclohexene, C₆H₁₀

Figure 6

Chlorine reacts with cyclohexene to produce a compound with the formula C₆H₁₀Cl₂

0 6 . 3 Complete **Figure 7** to show the displayed structural formula of C₆H₁₀Cl₂

[2 marks]

Figure 7

0 6. 4 Calculate the percentage by mass of chlorine in a molecule of C₆H₁₀Cl₂

Relative atomic masses (A_r): H = 1 C = 12

[3 marks]

Percentage by mass = _____ %

Cl = 35.5

7 .	June/2021/Pap	per_2H/No.10
	1 0	This question is about alkenes and alcohols.
		Ethene is an alkene produced from large hydrocarbon molecules.
		Large hydrocarbon molecules are obtained from crude oil by fractional distillation.
	1 0 . 1	Name the process used to produce ethene from large hydrocarbon molecules. [1 mark]
	1 0 . 2	Describe the conditions used to produce ethene from large hydrocarbon molecules. [2 marks]

1 0.3 Ethanol can be produced from ethene and steam.

The equati	ion for the reac	tion	is:		
	$C_2H_4(g)$	+	$H_2O(g)$	=	$C_2H_5OH(g)$
The forwar	rd reaction is ex	coth	ermic.		
	w the condition ally as possible		r this reac	tion s	should be chosen to produce ethanol as

solvedpapers.co.uk

1 0 . 4 Ethanol can also be produced from sugar solution by adding yeast.

Name this process.

[1 mark]

1 0 . 5 Butanol can be produced from sugar solution by adding bacteria.

Sugar solution is broken down in similar ways by bacteria and by yeast.

Suggest the reaction conditions needed to produce butanol from sugar solution

[2 marks]

by adding bacteria.

Ethanol and butanol can be used as fuels for cars.

1 0 . 6	A car needs an average of 1.95 kJ of energy to travel 1 m	
	Ethanol has an energy content of 1300 kilojoules per mole (kJ/mol).	
	Calculate the number of moles of ethanol needed by the car to travel 200 km	n [3 marks]
	Number of moles =	mol
1 0.7	When butanol is burned in a car engine, complete combustion takes place.	
	Write a balanced equation for the complete combustion of butanol.	
	You do not need to include state symbols.	[2 marks]