AQA - Chemical changes - GCSE Chemistry Paper_1

- 1. June/2021/Paper_1F/No.2
 - 0 2 This question is about electrolysis.
 - 0 2 . 1 Complete the sentence.

Choose the answer from the box.

[1 mark]

gaseous	molten	solid

Copper chloride can conduct electricity when in solution or

when _____ .

Figure 1 shows the apparatus used for the electrolysis of copper chloride solution.

Positive electrode

Copper chloride solution

Figure 1

Power supply

Beaker

Negative electrode

There are four ions in copper chloride solution:

- Cu²⁺
- Cl⁻
- H⁺
- OH⁻

		solvedpapers.co.uk	
0 2.2	Why do Cl⁻ ions and	I OH ions move to the positive electrode?	[1 mark]
0 2.3	Where do the H⁺ and copper chloride solu Tick (✓) one box.	d OH¯ ions come from in the electrolysis of tion?	[1 mark]
	Air		
	Copper chloride		
	Water		
0 2.4	Which ion produces Tick (✓) one box.	a metal?	[1 mark]
	Cu ²⁺		
	Cl		
	H*		
	OH-		

0 2 . 5 Figure 2 shows the apparatus during the electrolysis of copper chloride solution.

Figure 2

Describe what is seen at each electrode during the electrolysis of copper chloride solution.

Positive electrode

Negative electrode

0 2 . 6 500 cm³ of copper chloride solution contains 6.50 g of copper chloride.

Calculate the mass of copper chloride in 40.0 cm³ of this copper chloride solution.

[2 marks]

Mass = g

2. June/2021/Paper_1F/No.5

0 5

0 5

A student investigated the change in temperature when different masses of zinc were added to copper sulfate solution.

This is the method used.

- 1. Measure the volume of copper sulfate solution using a measuring cylinder.
- 2. Pour the copper sulfate solution into a metal container.
- 3. Add 2 g of zinc.
- 4. Measure the temperature of the solution.
- 5. Repeat steps 1 to 4 with different masses of zinc.

Figure 7 shows the apparatus.

Figure 7

Thermometer

Metal container

Copper sulfate solution

Give three improvements to the investigation to make the results more	accurate. [3 marks]	
1		
2		
3		

0 5 . 2 Figure 8 shows part of the measuring cylinder.

Figure 8

What is the volume of copper sulfate solution in Figure 8?

[1 mark]

Volume = _____ cm³

0 5 . 3 When zinc was added to copper sulfate solution the temperature increased.

Figure 9 shows the reaction profile.

Figure 9

What type of reaction is shown in Figure 9?

[1 mark]

Tick (✓) one box.

Endothermic Exothermic Neutralisation

Figure 10 shows the results.

Figure 10

0 5.4	Determine the gradient of the line in Figure 10.	
	Use the equation:	
	gradient = increase in temperature in °C increase in mass in grams	[4 marks]
	Gradient =	°C per g
0 5.5	Suggest why the student should not use more than 10 g of zinc. Use Figure 10 .	
	You should extend the graph line.	[2 marks]

3.

June/2021/Pa	per_1F/No.7	
0 7	Acids react to produce salts.	
	Universal indicator is added to water and then nitric acid is added to the mix	ture.
0 7.1	Give the colour change when nitric acid is added to the mixture of universal indicator and water. Tick (✓) one box.	[1 mark]
	Blue to red	
	Green to purple	
	Green to red	
	Red to purple	
0 7.2	What happens to the pH of water when nitric acid is added?	[1 mark]
	Tick (✓) one box.	[many
	Decreases	
	Stays the same	
	Increases	
0 7.3	What is the state symbol for nitric acid?	[1 mark]

Zinc carbonate reacts with nitric acid.

The word equation for the reaction is:

0 7.4	Give two observations that would be made when zinc carbonate is added to nitric aci	
	until the zinc carbonate is in excess. [2 marks]	
	1	
	2	

0 7 . 5 The formula of the zinc ion is Zn²⁺

The formula of the nitrate ion is NO₃⁻

What is the formula for zinc nitrate?

[1 mark]

Tick (\checkmark) one box.

ZnNO₃

Zn(NO₃)₂

Zn₂NO₃

Zn₂(NO₃)₂

0 7. 6 Acids react with insoluble metal oxides to produce salts.

	[

4.

June/2021/Pap	er_1H/No.2		
0 2	Acids react to produce sa	alts.	
	Universal indicator is add	ded to water and then nitric acid is added to the mixt	ure.
0 2.1	Give the colour change vuniversal indicator and w	when nitric acid is added to the mixture of vater.	[1 mark]
	Tick (✓) one box.		
	Blue to red		
	Green to purple		
	Green to red		
	Red to purple		
0 2 . 2	What happens to the pH	of water when nitric acid is added?	
	Tick (✓) one box.		[1 mark]
	rick (*) one box.		
	Decreases		
	Stays the same		
	Increases		
0 2 . 3	What is the state symbol	I for nitric acid?	[1 mark]

Zinc carbonate reacts with nitric acid.

The word equation for the reaction is:

0 2.4	Give two observations that would be made when zinc carbonate is added to nitric acid until the zinc carbonate is in excess.	
	[2 marks]	
	1	
	2	

0 2. 5 The formula of the zinc ion is Zn²⁺

The formula of the nitrate ion is NO₃⁻

What is the formula for zinc nitrate?

[1 mark]

Tick (✓) one box.

ZnNO₃

Zn(NO₃)₂

Zn₂NO₃

Zn₂(NO₃)₂

0 2 . 6	Acids react with insoluble metal oxides to produce salts.
	Plan a method to produce a pure, dry sample of the soluble salt copper chloride from an acid and a metal oxide.
	[6 marks]

5. June/2021/Paper_1H/No.3

0 3

This question is about energy change.

A student investigated the temperature change when 10 g of ammonium nitrate was added to 100 cm³ of water.

This is the method used.

- 1. Measure the temperature of 100 cm³ of water.
- 2. Add 10 g of ammonium nitrate.
- 3. Stir once.
- 4. Measure the temperature of the solution every minute for 7 minutes.

Figure 3 shows the apparatus.

0 3. 1 What is the dependent variable in this investigation?

[1 mark]

0 3 . 2	Give three improvements to the investigation to make the results more accurate. [3 marks]		
	1		
	2		
	3		

0 3 . 3 Figure 4 shows the results.

Figure 4

Explain the results.	[4 marks]

- 0 3 . 4
- Draw a reaction profile for an exothermic reaction.

You should label:

- the energy level of the reactants and of the products
- the activation energy
- the overall energy change.

[4 marks]

	solvedpapers.co.uk	
June/2021/Pa	per_1H/No.5 This question is about the electrolysis of aqueous solutions.	
	Hydrogen gas and chlorine gas are produced when sodium chloride solution is electrolysed.	
0 5.1	Hydrogen ions (H ⁺) are attracted to the negative electrode.	
	The half equation for the reaction at the negative electrode is:	
	$2H^+ + 2e^- \rightarrow H_2$	
	What type of reaction happens at the negative electrode?	
	Give the reason for your answer. [2 I	marks
	Type of reaction	
	Reason	
0 5.2	Chloride ions are attracted to the positive electrode.	

[2 marks]

0 5. 3 Hydrogen gas and oxygen gas are produced when sodium sulfate solution

Explain how oxygen gas is produced in the electrolysis of sodium sulfate solut [4	is electrolysed.	
	Explain how oxygen gas is produced in the electrolysis of sodiu	m sulfate soluti [4

			solvedpapers.co.u	ık			
7.	June/2021/Pa	_	e, ethane, propane and butane	all react with	oxygen to pr	oduce carbo	on dioxide
	0 7.1	Suggest	t why a mixture of methane and	oxygen does	not react a	t room temp	erature.
		Answer	in terms of particles.			I	[2 marks]
	0 7.2		shows the energy released wh gen to produce carbon dioxide		ethane and լ	propane read	ct
				Compoun	d reacted w	ith oxygen	
				Methane	Ethane	Propane	
			Formula of compound	CH₄	C ₂ H ₆	C ₃ H ₈	
			Energy released in kJ/mol	680	1160	1640	
			the energy released when butar dioxide and water.	ne (C ₄ H ₁₀) rea	acts with oxy	gen to produ	uce [1 mark]

Energy released = _____ kJ/mol

0 7. 3 Propane reacts with oxygen to produce carbon dioxide and water.

The displayed formula equation for the reaction is:

The reaction is exothermic.

In the reaction, the energy released when forming new bonds is 1640 kJ/mol greater than the energy needed when breaking bonds.

Table 4 shows bond energies.

Table 4

Bond	H-C	C-C	0=0	C=0	O-H
Bond energy in kJ/mol	410	x	500	740	460

Calculate the C—C bond energy (X).	[5 marks]

kJ/mol