AQA - Work done and energy transfer – GCSE Combined Science Physics

1.	June/2020/Paper_2F/No.4(4.3_4.4)						
	0 4.3	The bicycle travels a distance of 250 m					
		The bicycle exert	s a constant hor	izontal force of 30	N on the ground.		
		Calculate the wo	rk done.				
		Use the equation	:				
			work	done = force × dis	stance		
		Choose the unit	from the box.			[3 marks]	
			J	kg	m		
						-	
			٧	Vork done =		Unit	

solvedpapers.co.uk

0 4.4	The bicycle travels at a consta	nt speed.	
	Complete the sentences.		
	Choose answers from the box.		[3 marl
	chemical	frictional	kinetic
	magnetic		tension
	As the bicycle moves, work is done against		forces.
	There is no change in the cycli	st's	store of energy.

There is a decrease in the cyclist's _____ store of energy.

June/2020/Paper_2F/No.1(1.6)

1 . 6	When the pin is struck it a	accelerates.			
	Complete the sentences.				
	Choose answers from the	box.			
	Each answer can be used	d once, more than once, or not at a	ıll. [3 marks		
	decreases	increases	stays the same		
	The displacement of the pin from the girl				
	The mass of the pin				
	The kinetic energy of the	pin			

3. June/2020/Paper_2H/No.3

0 3 Figure 5 shows a computer keyboard.

There is a spring under each key.

Figure 5

0 3 . 1	The springs behave elastically when a force is applied.	
	What is meant by elastic behaviour?	[1 mark
	Tick (✓) one box.	[1 mark
	The spring will be compressed when the force is applied to it.	
	The spring will become deformed when the force is applied to it.	
	The spring will become longer when the force is removed.	
	The spring will return to its original length when the force is removed.	8

0 3 . 2	Suggest two properties that should be the same for each spring.	[2 marks]
	1	
	2	

0 3 . 3 Figure 6 shows one of the keys and its spring.

Figure 6

The key must be pressed with a minimum force of 0.80 N before the key touches the switch.

Calculate the spring constant of the spring in Figure 6.

[3 marks]

Spring constant = _____

N/m

0 3.4

Figure 7 shows a spring that has been hung from a support.

The spring is stationary and has been stretched beyond its limit of proportionality.

Figure 7

Which two statements are true for the spring in Figure 7 ? Tick (✓) two boxes.	[2 marks
The elastic potential energy of the spring is zero.	
The extension of the spring is directly proportional to the force applied.	
The upward force on the spring is equal to the downward force.	
The spring cannot be stretched any further.	
The spring is inelastically deformed.	

June/2019/Pap	er_2F/No.4(4.7_4.8)	
0 4 . 7	Write down the equation that links distance, force and work done.	[1 mark]
0 4.8	When the driver applies the brakes, there is a constant resultant force of 6.0 the car.	kN on
	The car travels a distance of 75 m before stopping.	
	Calculate the work done in stopping the car.	[3 marks]
	Wark dans =	

5. June/2019/Paper_2H/No.5

0 5 Figure 8 shows some springs inside a mattress.

Figure 8

0 5 . 1	Which proportionality is true when a force is applied to a spring?		[1 mark]
	Tick (✓) one box.		-
	Force ∝ energy stored		
	Force ∝ extension		
	Force ∝ length		
	Force ∝ spring constant		

solvedpapers.co.uk

	Mass =	kg
	gravitational field strength = 9.8 N/kg	[4 marks]
0 5.2	Calculate the mass of the person.	
	The mean force on each spring in the mattress is 0.49 N	
	A person lies on the mattress and the springs compress.	
	A mattress contains 1200 identical springs.	

solvedpapers.co.uk

0 5.3	The mean compression of each spring is 3.5×10^{-3} m	
	Calculate the spring constant of each spring in the mattress.	
	Give the unit.	
		[4 marks]
	Spring constant =	
	Unit =	
0 5 . 4	For a given force, different springs compress by different amounts.	
	Explain what property of the springs would make the mattress soft.	
		[2 marks]