AQA - Reactions of acids, bases and salts - GCSE Chemistry

1. May/2020/Paper_8462/1F/No.1.7

Balance the equation for the reaction between iron and bromine.

[1 mark]

$$2Fe + Br_2 \rightarrow 2FeBr_3$$

2. May/2020/Paper_8462/1F/No.7

This question is about acids, bases and salts.

Zinc nitrate is a salt.

A student produces zinc nitrate using an acid and a base.

Which acid should the student use to produce zinc nitrate?

[1 mark]

Tick (\checkmark) one box.

Hydrochloric acid

Nitric acid

Sulfuric acid

which is a base the student could use to produce zinc nitrate?

Tick (✓) one box.

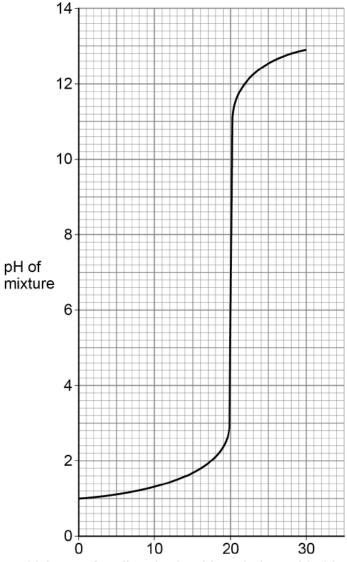
Zinc chloride

Zinc oxide

Zinc sulfate

Name the salt with the formula MgBr₂

[1 mark]

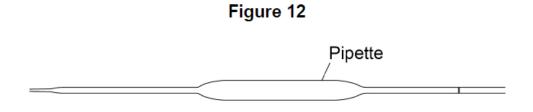

A student investigated how pH changes during a titration.

This is the method used.

- 1. Pour 25.0 cm³ of hydrochloric acid into a beaker.
- 2. Measure the pH of the hydrochloric acid with a pH probe.
- 3. Add 1.0 cm³ of sodium hydroxide solution from a burette.
- 4. Swirl the mixture.
- 5. Measure the pH of the mixture.
- 6. Repeat steps 3 to 5 until a total of 30.0 cm³ of sodium hydroxide solution has been added.

Figure 10 shows the student's results.


Volume of sodium hydroxide solution added in \mbox{cm}^3


Describe how the pH of the mixture changes as sodium hydroxide solution is added to hydrochloric acid.
Use data from Figure 10 in your answer. [3 marks]
What volume of sodium hydroxide solution is needed to neutralise 25.0 cm³ of hydrochloric acid?
Use Figure 10. [1 mark]
Volume = cm ³
Figure 11 shows the colour of universal indicator at different pH values.
Figure 11
$\longleftarrow Red \longrightarrow \leftarrow Orange \rightarrow \leftarrow Yellow \rightarrow \leftarrow Blue \longrightarrow \leftarrow Purple \longrightarrow$
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
The student could have used universal indicator instead of a pH probe. Determine the colour of universal indicator when 10.0 cm³ of sodium hydroxide solution has been added to 25.0 cm³ of hydrochloric acid.
Use Figure 10 and Figure 11.

Colour = ____

[1 mark]

The student used a pipette to measure 25.0 cm³ of hydrochloric acid.

The pipette is labelled 25.0 ± 0.06 cm³

Calculate the percentage uncertainty in the volume measured using this pipette.

Use the equation:

May/2020/Paper_8462/1F/No.10
--

A student investigated the law of conservation of mass.

This is the method used.

- 1. Pour silver nitrate solution into a beaker labelled A.
- 2. Pour sodium iodide solution into a beaker labelled B.
- 3. Measure the masses of both beakers and their contents.
- 4. Pour the solution from beaker B into beaker A.
- 5. Measure the masses of both beakers and their contents again.

Table 7 shows the student's results.

Table 7

	Mass before mixing in g	Mass after mixing in g
Beaker A and contents	78.26	108.22
Beaker B and contents	78.50	48.54

Explain how the results demonstrate the law of conservation of mass.

You should use data from Table 7 in your answer.	[2 marks]
Suggest how the student could separate the insoluble silver iodide f the end of the reaction.	from the mixture at

Suggest why the student warmed the silver iodide.	[1 mark
	[1 mark]
Suggest one impurity that was removed by rinsing with water.	[1 mark
2. Warm the silver iodide.	
1. Rinse the silver iodide with distilled water.	
This is the method used.	
The student purified the separated silver iodide.	

Calculate the percentage atom economy for the production of silver iodide in this reaction.

The equation for the reaction is:

$$AgNO_3(aq) + Nal(aq) \rightarrow Agl(s) + NaNO_3(aq)$$

Give your answer to 3 significant figures.

Relative formula masses (M_r): AgNO₃ = 170 NaI = 150 AgI = 235 NaNO₃ = 85

[4 marks]

Percentage atom economy (3 significant figures) = ______%

Give one reason why reactions with a high atom economy are used in industry.

[1 mark]

4. May/2020/Paper_8462/1F/No.3

This question is about silver iodide.

Silver iodide is produced in the reaction between silver nitrate solution and sodium iodide solution.

The equation for the reaction is:

$$AgNO_3(aq) + Nal(aq) \rightarrow Agl(s) + NaNO_3(aq)$$

A student investigated the law of conservation of mass.

This is the method used.

- 1. Pour silver nitrate solution into a beaker labelled A.
- 2. Pour sodium iodide solution into a beaker labelled **B**.
- Measure the masses of both beakers and their contents.
- 4. Pour the solution from beaker B into beaker A.
- 5. Measure the masses of both beakers and their contents again.

Table 3 shows the student's results.

Table 3

	Mass before mixing in g	Mass after mixing in g
Beaker A and contents	78.26	108.22
Beaker B and contents	78.50	48.54

Explain how the results demonstrate the law of conservation of mass.

You should use data from Table 3 in your answer.	[2 marks]
Suggest how the student could separate the insoluble silver iodide from the the end of the reaction.	
	[1 mark]
The student purified the separated silver iodide.	
This is the method used.	
Rinse the silver iodide with distilled water.	
2. Warm the silver iodide.	
Suggest one impurity that was removed by rinsing with water.	[1 mark]
Suggest why the student warmed the silver iodide.	[1 mark]

Calculate the percentage atom economy for the production of silver iodide in this reaction.

The equation for the reaction is:

$$AgNO_3(aq) + Nal(aq) \rightarrow Agl(s) + NaNO_3(aq)$$

Give your answer to 3 significant figures.

Relative formula masses (M_r): AgNO₃ = 170 Nal = 150 AgI = 235 NaNO₃ = 85

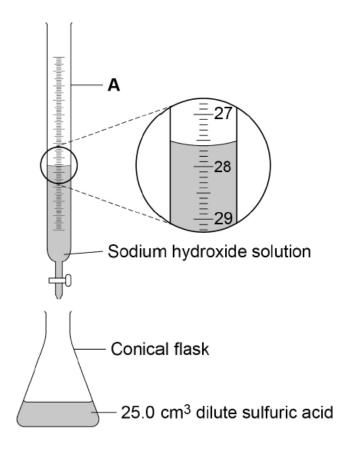
[4 marks]

Percentage atom economy (3 significant figures) = %

Give one reason why reactions with a high atom economy are used in industry.

[1 mark]

5.


May/2019/Paper_8462/1F/No.9 This question is about acids and alkalis.	
Which ion do all acids produce in aqueous solution?	[1 mark
Tick (✓) one box.	Į man,
H ⁺	
H ⁻	
O ²⁻	
OH ⁻	
Calcium hydroxide solution reacts with an acid to form calcium chloride.	
Complete the word equation for the reaction.	[2 marks

calcium hydroxide + _____ acid → calcium chloride +____

A student investigates the volume of sodium hydroxide solution that reacts with $25.0~{\rm cm}^3$ of dilute sulfuric acid.

Figure 12 shows the apparatus the student uses.

Figure 12

Use Figure 12 to answer Questions 09.3 and 09.4

Name apparatus A.

[1 mark]

What is the reading on apparatus A?

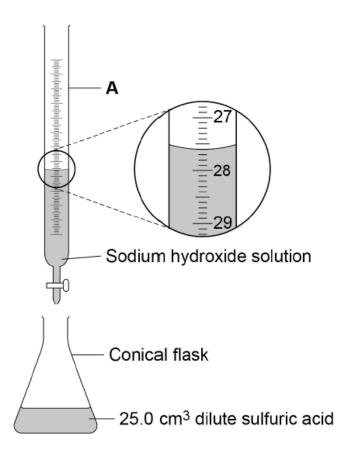
[1 mark]

_____ cm³

The higher the concentration of a sample of dilute sulfuric acid, the greater the volume of sodium hydroxide needed to neutralise the acid.

The student tested two samples of dilute sulfuric acid, P and Q.

Describe how the student could use titrations to find which sample, P or Q , is concentrated.	
	[6 marks


May/2019/Paper_8462/1H/No.2 This question is about acids and alkalis.	
Which ion do all acids produce in aqueous solution?	[1 mark]
Tick (✓) one box.	[1 mark]
H ⁺	
H ⁻	
O ²⁻	
OH-	
Calcium hydroxide solution reacts with an acid to form calcium chloride.	
Complete the word equation for the reaction.	[2 marks]

calcium hydroxide + _____ acid → calcium chloride + ____

A student investigates the volume of sodium hydroxide solution that reacts with $25.0~{\rm cm}^3$ of dilute sulfuric acid.

Figure 2 shows the apparatus the student uses.

Figure 2

Use Figure 2 to answer Questions 02.3 and 02.4

Name apparatus A.

[1 mark]

What is the reading on apparatus A?

[1 mark]

_____ cm³

The higher the concentration of a sample of dilute sulfuric acid, the greater the volume of sodium hydroxide needed to neutralise the acid.

The student tested two samples of dilute sulfuric acid, P and Q.

Describe how the student could use titrations to find which sample, P or Q , is concentrated.	
	[6 marks