AQA - Quantitative Chemistry - GCSE Chemistry

1.	May/2020/Paper_8462/1F/No.1.8 Calculate the relative formula mass (M_r) of FeBr ₃
	Relative atomic masses (A_r): Fe = 56 Br = 80 [2 marks
	Relative formula mass (M_r) =
	Trelative formula mass (Mr) =
2.	May/2020/Paper_8462/1F/No.5.5 The formula of cryolite is Na_3AlF_6
	Give the total number of atoms in the formula. [1 mark
	Number of atoms =
3.	May/2020/Paper_8462/1F/No.5.8 A sample of bauxite contains 25% aluminium.
	Calculate the maximum mass of aluminium that can be extracted from 300 000 kg of the sample of bauxite.
	Give your answer in standard form. [3 marks]
	Maximum mass (in standard form) =kg

4.

May/2020/Paper_8462/1H/No.7.6 The energy needed for a car powered by a hydrogen fuel cell to travel 100 58 megajoules (MJ).	0 km is
The energy released when 1 mole of hydrogen gas reacts with oxygen is	290 kJ
The volume of 1 mole of a gas at room temperature and pressure is 24 dr	m³
Calculate the volume of hydrogen gas at room temperature and pressure the car to travel 100 km	needed for
	•
Volume of hydrogen gas =	dm ³

5. May/2020/Paper_8462/1H/No.8.6

A teacher investigated the reaction of iron with chlorine using the apparatus in **Figure 5**.

The word equation for the reaction is:

The teacher weighed:

- · the glass tube
- · the glass tube and iron before the reaction
- the glass tube and iron chloride after the reaction.

Table 6 shows the teacher's results.

Table 6

	Mass in g
Glass tube	51.56
Glass tube and iron	56.04
Glass tube and iron chloride	64.56

Calculate the simplest whole number ratio of:

6.

moles of iron atoms : moles of chlorine atoms

Determine the balanced equation for the reaction.	
Relative atomic masses (A_r): Cl = 35.5 Fe = 56 [6 mar	rks]
Moles of iron atoms : moles of chlorine atoms =::	
Equation for the reaction	
May/2020/Paper_8462/1H/No.9.4 The student made 250 cm ³ of a solution of citric acid of concentration 0.0500 mol/o	3m²
Calculate the mass of citric acid (C ₆ H ₈ O ₇) required.	
Relative atomic masses (A_r) : H = 1 C = 12 O = 16 [3 mail	rks]

Mass = g

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 .	May/2020/Paper_	8462/1H/No.9.79
---------------------------------------	------------	-----------------	-----------------

 $13.3~\text{cm}^3$ of $0.0500~\text{mol/dm}^3$ citric acid solution was needed to neutralise $25.0~\text{cm}^3$ of sodium hydroxide solution.

The equation for the reaction is:

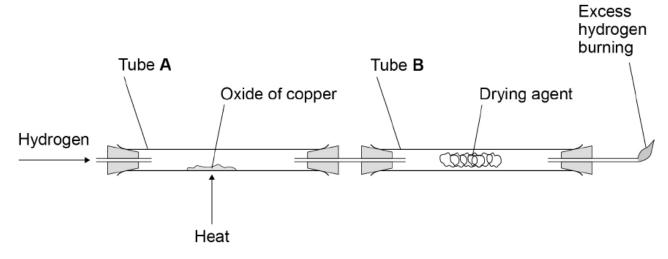
$$3 \text{ NaOH} + C_6 H_8 O_7 \rightarrow C_6 H_5 O_7 Na_3 + 3 H_2 O_7$$

Calculate the concentration of the sodium hydroxide solution in mol/dm ³	[3 marks
Concentration =	mol/dm³

Calculate the mass of aluminium	m oxide in 40 l	kg of the rock sample.	[2 marks
			[2 marks
	Mass of alu	ıminium oxide =	kg
The formula of aluminium oxide	e is Al ₂ O ₃		
Calculate the relative formula n	nass $(M_{\rm r})$ of all	uminium oxide.	
Relative atomic masses (A _r):	O = 16	Al = 27	[2 marks]

Relative formula mass (M_r) = _____

60.0 kg of aluminium oxide produces a maximum of 31.8 kg of aluminium.	
In an extraction process only 28.4 kg of aluminium is produced from 60.0 kg of aluminium oxide.	
Calculate the percentage yield.	
Give your answer to 3 significant figures.	
Use the equation: $percentage \ yield = \frac{mass \ of \ product \ actually \ made}{maximum \ theoretical \ mass \ of \ product} \times 100$	
maximum meoretical mass of product	[3 marks
Percentage yield =	%


9. May/2019/Paper_8462/1H/No.8

Copper forms two oxides, Cu₂O and CuO

A teacher investigated an oxide of copper.

Figure 10 shows the apparatus.

Figure 10

This is the method used.

- 1. Weigh empty tube A.
- 2. Add some of the oxide of copper to tube A.
- 3. Weigh tube A and the oxide of copper.
- 4. Weigh tube B and drying agent.
- 5. Pass hydrogen through the apparatus and light the flame at the end.
- 6. Heat tube A for 2 minutes.
- 7. Reweigh tube **A** and contents.
- 8. Repeat steps 5 to 7 until the mass no longer changes.
- 9. Reweigh tube **B** and contents.
- 10. Repeat steps 1 to 9 with different masses of the oxide of copper.

Suggest one reason why step 8 is needed.	[1 mark]
Explain why the excess hydrogen must be burned off.	[2 marks]

Figure 10 is repeated here.

Figure 10

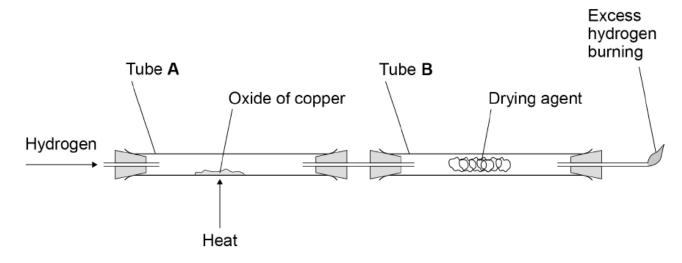


Table 5 shows the teacher's results.

Table 5

	Mass in g
Tube A empty	105.72
Tube A and oxide of copper before heating	115.47
Tube A and contents after 2 minutes	114.62
Tube A and contents after 4 minutes	114.38
Tube A and contents after 6 minutes	114.38
Tube B and contents at start	120.93
Tube B and contents at end	123.38

When an oxide of copper is heated in a stream of hydrogen, the word equation for the reaction is:

copper oxide + hydrogen
$$\rightarrow$$
 copper + water

Determine the mass of copper and the mass of water produced in this experiment.

Use Table 5 .				[2 marks]
	Mass	of copper =		g
	Mas	s of water =		g
The teacher repeated the	experiment wi	th a different sa	ample of the oxide	of copper.
The teacher found that the 0.72 g of water.	e oxide of copp	per produced 2.	54 g of copper an	d
Two possible equations fo	r the reaction	are:		
Equation 1: Cu ₂ O + H ₂	₂ → 2Cu + I	H ₂ O		
Equation 2: CuO + H ₂	\rightarrow Cu + H ₂ 0)		
Determine which is the co	rrect equation	for the reactior	in the teacher's	experiment.
Relative atomic masses (A	A_{r}): $H = 1$	O = 16	Cu = 63.5	[3 marks]

10.	May/2019	/Paper	8462/1	1H/No.9.5
-----	----------	--------	--------	-----------

The student repeated the investigation.

The student used solutions that had different concentrations from the first investigation.

The student found that 15.5 cm³ of 0.500 mol/dm³ dilute sulfuric acid completely reacted with 25.0 cm³ of potassium hydroxide solution.

The equation for the reaction is:

$$2 \text{KOH} + \text{H}_2 \text{SO}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{H}_2 \text{O}$$

Calculate the concentration of the potassium hydroxide solution in mol/dm3 and in g/dm³

Relative atomic masses (A_r): H = 1	O = 16	K = 39	[6 marks]
Concentration	in mol/dm ³ :	=	mol/dm ³
Concentrati	on in g/dm ³	=	g/dm³