## AQA - Quantitative Chemistry - GCSE Combined Science Chemistry

| I. | 100 cm <sup>3</sup> of the copper sulfate solution contains 1.8 g of copper sulfate.                  |                  |
|----|-------------------------------------------------------------------------------------------------------|------------------|
|    | Calculate the mass of copper sulfate in 25 cm <sup>3</sup> of this copper sulfate solution            | on.<br>[2 marks] |
|    |                                                                                                       |                  |
|    |                                                                                                       |                  |
|    | Mass =                                                                                                | g                |
| 2. | May/2020/Paper_8464/1F/No.3.6 3.94 g of gold reacts with chlorine to produce 6.07 g of gold chloride. |                  |
|    | The word equation for the reaction is:                                                                |                  |
|    | gold + chlorine $\rightarrow$ gold chloride                                                           |                  |
|    | Calculate the mass of chlorine that reacts with 3.94 g of gold.                                       | [1 mark]         |
|    |                                                                                                       |                  |
|    | Mass =                                                                                                | g                |

| 3. | Calculate the relative formula mass ( $M_r$ ) of gold chloride (AuCl <sub>3</sub> ).                        |           |
|----|-------------------------------------------------------------------------------------------------------------|-----------|
|    | Relative atomic masses ( $A_r$ ): Cl = 35.5 Au = 197                                                        | [2 marks] |
|    |                                                                                                             |           |
|    | Relative formula mass (M <sub>r</sub> ) =                                                                   |           |
| 4. | May/2020/Paper_8464/1H/No.5.7                                                                               |           |
| •• | A copper sulfate solution contained 0.100 moles of copper sulfate dissolved in 0.500 $dm^{\rm 3}$ of water. |           |
|    | Calculate the mass of copper sulfate in 30.0 cm <sup>3</sup> of this solution.                              |           |
|    | Relative formula mass ( $M_r$ ): CuSO <sub>4</sub> = 159.5                                                  | [4 marks  |
|    |                                                                                                             |           |
|    |                                                                                                             |           |
|    |                                                                                                             |           |
|    | Macc -                                                                                                      | ~         |

| 5. | May/2020/Paper | 8464/1H/No.6.3 |
|----|----------------|----------------|
|    |                |                |

Gold reacts with the elements in Group 7 of the periodic table.

0.175 g of gold reacts with chlorine.

The equation for the reaction is:

$$2 \; \text{Au} \; + \; 3 \; \text{Cl}_2 \; \rightarrow \; 2 \; \text{AuCl}_3$$

Calculate the mass of chlorine needed to react with 0.175 g of gold.

Give your answer in mg

Relative atomic masses ( $A_r$ ): Cl = 35.5 Au = 197

Mass of chlorine = \_\_\_\_\_ me

[5 marks]

## **6.** Jun/2019/Paper\_8464/1F/No.5.2

**Figure 4** shows the percentage by mass of the elements calcium, carbon and oxygen in calcium carbonate.

Figure 4



What is the percentage by mass of calcium in calcium carbonate?

[1 mark]

Percentage = %

| <ol><li>Jun/2019/Paper_8464/1F/No.5.3</li></ol> |
|-------------------------------------------------|
|-------------------------------------------------|

At high temperature, sodium nitrate decomposes into sodium nitrite and oxygen.

A student heats three samples of sodium nitrate.

The mass of each sample was  $4.50\ g$ 

The mass of solid after heating was recorded.

Table 2 shows the mass of solid after heating in each experiment.

Table 2

| Experiment | Mass of solid after heating in g |
|------------|----------------------------------|
| 1          | 3.76                             |
| 2          | 3.98                             |
| 3          | 4.09                             |

Calculate the mean mass of solid after heating.

Give your answer to 3 significant figures.

|                                    | [3 marks] |
|------------------------------------|-----------|
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
| Mean mass of solid after heating = | g         |

| 8. | Jun/2019/Paper_8464/1F/No.6.5  A solution of hydrochloric acid contains 3.2 g of hydrogen chloride in 50 cm                                                            | 3         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | Calculate the concentration of hydrogen chloride in g per dm <sup>3</sup>                                                                                              | [3 marks] |
|    |                                                                                                                                                                        |           |
|    | Concentration =                                                                                                                                                        | g per dm³ |
| 9. | Jun/2019/Paper_8464/1F/No.7.5 Calculate the percentage by mass of oxygen in ammonium nitrate (NH <sub>4</sub> NO Relative atomic masses ( $A_r$ ): H = 1 N = 14 O = 16 | 3).       |
|    | Relative atomic masses ( $M_r$ ): NH <sub>4</sub> NO <sub>3</sub> = 80                                                                                                 | [3 marks] |
|    |                                                                                                                                                                        |           |
|    |                                                                                                                                                                        |           |
|    | Percentage by mass of oxygen =                                                                                                                                         | %         |

**10.** Jun/2019/Paper\_8464/1H/No.1.5

|     | A solution of hydrochloric acid contains 3.2 g of hydrogen chloride in 50 c                                      | m <sup>3</sup> |
|-----|------------------------------------------------------------------------------------------------------------------|----------------|
|     | Calculate the concentration of hydrogen chloride in g per dm <sup>3</sup>                                        | [3 marks]      |
|     |                                                                                                                  |                |
|     | Concentration =                                                                                                  | a per dm³      |
| 11. | Jun/2019/Paper_8464/1H/No.2.5  Calculate the percentage by mass of oxygen in ammonium nitrate (NH <sub>4</sub> N |                |
|     | Relative atomic masses ( $A_r$ ): H = 1 N = 14 O = 16                                                            |                |
|     | Relative formula mass ( $M_r$ ): NH <sub>4</sub> NO <sub>3</sub> = 80                                            | [3 marks]      |
|     |                                                                                                                  |                |
|     |                                                                                                                  |                |
|     |                                                                                                                  |                |
|     | Percentage by mass of oxygen =                                                                                   | %              |

| 2. | Jun/2019/Paper_8464/1H/No.4.6  How many atoms are there in 1 g of argon? |          |
|----|--------------------------------------------------------------------------|----------|
|    | The Avogadro constant is $6.02 \times 10^{23}$ per mole.                 |          |
|    | Relative atomic mass $(A_r)$ : Ar = 40                                   | [2 marks |
|    |                                                                          |          |
|    |                                                                          |          |
|    |                                                                          |          |

Number of atoms in 1 g = \_\_\_\_\_

## **13.** Jun/2019/Paper\_8464/1H/No.5.5

Figure 5 shows the expected mass of copper produced each minute.

Figure 5



Determine the expected mass of copper after 24 hours.

Use Figure 5.

|          | [3 marks] |
|----------|-----------|
|          |           |
|          |           |
|          |           |
|          |           |
|          |           |
|          |           |
| Mass =   | ma        |
| IVIASS - | mg        |

**14.** Jun/2019/Paper\_8464/1H/No.5.7

| Calculate the gradient of the line in Fig | ure 6.   |           |
|-------------------------------------------|----------|-----------|
| Give the unit.                            |          | [3 marks] |
|                                           |          |           |
|                                           |          |           |
|                                           |          |           |
|                                           | Gradient |           |
|                                           | Unit     |           |