AQA - Purity, formulations and Chromatography - GCSE Chemistry

1. May/2020/Paper_8462/2F/No.4

This question is about ink.

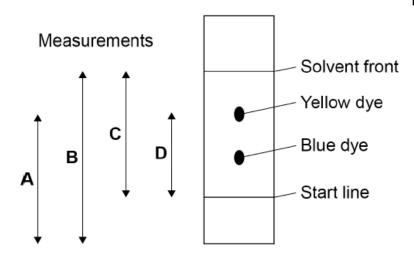

A student investigated green ink using paper chromatography in a beaker.

Figure 6 shows:

- · the results the student obtained
- measurements A, B, C and D the student could make.

Figure 6

Diagram not to scale

The student calculated the	R _f value of the blue dye.	
The student measured:		
• the distance moved by t	he blue dye = 2.7 cm	
 the distance moved by t 	he solvent = 9.0 cm	
Calculate the R _f value of the	ne blue dye.	
Use the equation:	$R_f = \frac{\text{distance moved by dye}}{\text{distance moved by solvent}}$	[2 marks]
Which measurements on I of the yellow dye?	$R_f = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
Tick (✓) one box.		[1 mark]
A and B		
A and C		
B and D		
C and D		

Paper chromatography has a stationary phase and a mobile phase.

Draw **one** line from each phase to the identity of that phase in the student's investigation.

Phase Identity

Beaker

Mobile phase

Ink

Paper

Stationary phase

Start line

	ontains 85% yellow dye and 15% blu	ue dve
--	------------------------------------	--------

Determine the simplest whole number ratio of yellow dye : blue dye in the green ink. [1 mark]
Yellow dye : Blue dye = :
Which word correctly describes the green ink? [1 mark]
Tick (✓) one box.
Compound
Element
Formulation
Solvent
The student repeated the investigation using green ink containing 75% yellow dye and 25% blue dye.
What would happen to the R _f value of the yellow dye?
Tick (✓) one box.
The R _f value would decrease.
The R _f value would increase.
The R _f value would stay the same.

2.	May	/2020/	Paper	8462	/2H	/No.4

This question is about ink.

A student investigated green ink using paper chromatography in a beaker.

The student used water as the solvent.

Figure 2 shows the chromatogram obtained.

Figure 2

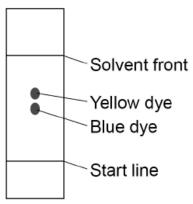


Diagram not to scale

The R_f value of the yellow dye = 0.60

The distance moved by the yellow dye = 5.7 cm

Calculate the distance moved by the solvent.

[3 marks]

Distance moved by the solvent = _____ cm

The green ink contains more than two comp	oounds.
Suggest one reason why only two spots are	e seen on Figure 2 . [1 mark]
On the student's chromatogram, the yellow	and blue spots are very close together.
Which two ways could increase the distance	e between the spots? [2 marks]
Tick (✓) two boxes.	[2 marks]
Allow the solvent front to travel further.	
Dry the chromatogram more slowly.	
Use a different solvent.	
Use a larger beaker.	
Use a larger spot of green ink.	
The manufacturers of the green ink always and blue dye.	use the same proportions of yellow dye
Suggest one reason why.	[1 mark]

The R_f value of a dye depends on:

- the solubility of the dye in the solvent
- the attraction of the dye to the paper.

both changed?	[1 mark]
Tick (✓) one box.	
The dye is less soluble in the new solvent and less attracted to the new paper.	
The dye is less soluble in the new solvent and more attracted to the new paper.	
The dye is more soluble in the new solvent and less attracted to the new paper.	
The dye is more soluble in the new solvent and more attracted to the new paper.	

3.

3.	May/2019/Paper_8462/2F/No.1.5 How could pure water be produced from drinking water that contained dissolved		
	solids?	[1 mark]	
	Tick (✓) one box.		
	Chromatography		
	Cracking		
	Distillation		
	Sedimentation		
4.	May/2019/Paper_8462/2H/No.2.2		
	Complete the sentence.	[1 mark]	
	Methane produces carbon monoxide when burning in a limited supply of		
	·		